THE CITY OF GHENT AS SEEN FROM HOSTEL UPPELINK

Best rates at www.hosteluppelink.co

KAYAK RENTAL - START FROM HER

New detectors and concepts for sub-100ps timing

Diego Gonzalez Diaz (Uludag University and CERN), on behalf of the CERN-GDD group and a lot of people

22/2/2016, Ghent

Who needs timing?

- 10-20ps timing for minimum ionizing particles at sustained fluxes of 1-10MHz/cm² (and granularity ≤ 1 cm²) required for pile-up mitigation in sLHC (figures from CMS).
- 100ps timing can help to reconstruct directionality in both neutrino and 'neutrino-less' detectors by making use of Cherenkov light. It can also help at reducing backgrounds (Snowmass13).
- 100ps timing helps in muon tomography, by providing statistical information on the muon momentum (e.g.: P. Baeso at RPC2014). It also helps at muography, by suppressing random coincidences.
- sub-100ps timing helps PET scanners in the determination of the e⁺ vertex position and suppressing backgrounds (e.g.: P.Fonte/A.Blanco, S. Majewski at CERN detector seminar)
- ~ps time resolution allows to determine jet composition as well as to match gamma vertexes (Snowmass13).
- sub-100ps: allows to correct for chromatic dispersion in DIRC detectors (Snowmass13).
- 100ps: next generation heavy ion experiments need it both for the start and time-of-flight detectors (e.g.: CBM).

Layout of the talk

A concept

A crazy idea

A wild shot

PART I

A concept

Basic idea

Main sources of jitter per photo-electron

Successfully tried in G. Charpak et al., NIM A478(2002)26 ($\sigma_t = 680 \text{ ps/phe}$) Basic idea

Main sources of jitter per photo-electron

Successfully tried in G. Charpak et al., NIM A478(2002)26 ($\sigma_t = 680 \text{ ps/phe}$)

correctable through amplitude information (e.g.: Constant Fraction Discriminator)

expected number of Cherenkov photons for mips

$$\frac{d^2 N}{dEdx} = \frac{\alpha^2 z^2}{r_e m_e c^2} \sin^2 \theta_c \approx \frac{370}{eVcm} \left(1 - \frac{1}{n^2(E)} \right)$$

$$N_{p.e.} \approx 370L \int T(E) QE(E) \left(1 - \frac{1}{n^2(E)} \right) dE$$

$$N_{p.e.} \approx 100\text{-}150/cm \implies \sim 50 \text{ per 3mm crystal}$$

Thomas Papaevangelou et al, arXiv:1601.00123

The 'proof-of-concept' detector (in a nutshell)

results from a candle (Ne/Ethane: 90/10)

Measurements @ IRAMIS laser facility

Measurements @ IRAMIS laser facility

IRAMIS facility @ CEA Saclay (thanks to Thomas Gustavsson!)

- > UV laser with $\sigma_t \sim 100$ fs
- > $\lambda = 275-285$ nm after doubling
- intensity ~ 3 mJoule / pulse
- Repetition rate 8 kHz
- Light attenuators (fine micro-meshes 10-20% transparent)
- Trigger from fast Photo-Diode
- ➢ Cividec 1 GHz, 40 db preamplifier + 2GHz scope
- Two detector configurations tested!:
 - ✓ Bulk Micromegas (mesh supported by pillars).
 - ✓ Microbulk Micromegas (holes done 'a la' GEM, no mesh as such).

Data taking and results

Single-photon determination

axi-symmetric model of microbulk Micromegas (color code: **electron density** at a given time)

(single-electron induced signal)

Average solutions from hydro (transmission and gain)

and the

Stochastic solutions from 1D + hydro (time resolution)

PART III

A wild shot

Visiting an old friend...

A PICOSECOND TIME OF FLIGHT SPECTROMETER FOR THE VEPP-2M BASED ON LOCAL-DISCHARGE SPARK COUNTER

A 20 ps timing device—A Multigap Resistive Plate Chamber with 24 gas gaps S. An^a, Y.K. Jo^a, J.S. Kim^a, M.M. Kim^a, D. Hatzifotiadou^b, M.C.S. Williams^{b,*}, A. Zichichi^{c,d}, R. Zuyeuski^a ^aWorld Laboratory, Geneva, Switzerland ^bSecione INFN, Bologna, Italy ^cDipartimento di Fisca dell'Università, Bologna, Italy

30cm length!

Streamer mode

Time_{diff}[ps]

Let's consider some facts

HV needed will go up to ± 20 kV!

Combining small gaps and high pressure in multi-gap may yield the desired improvement factor necessary to reach the 10 ps level!

Conclusions

- A diffusion-limited Micromegas-based detector of 200um gap has been studied.
- When coupled to a photo-cathode, its intrinsic resolution was determined to be 200ps/ $\sqrt{n_{ph}}$.
- When coupled to a VUV-transparent crystal, this value extrapolates to 20-30ps/mip.
- With the optimization of the gas and reduction of the drift gap, the value per photon could be brought down to $50 \text{ps}/\sqrt{n_{\text{ph}}}$ that is likely to be the limit of this technology for the foreseeable future.
- Consolidation of this detection technique requires of several steps (and a long roadmap...):
 - Validation with minimum ionizing particles.
 - Evaluation of photo-cathode ageing for large exposures.
 - Evaluation of the stability of the Micromegas detector at the flux of interest.
- A realistic concept for the 'Serpentine RPC' was introduced for the first time. Simulations show that signals in a compensated RPC ($C_m/C_0 = L_m/L_0$) can be efficiently routed through detectors whose electrodes are arranged in a delay-line configuration, and might be used for covering large areas under low multiplicities in an efficient way.
- We revisited the high pressure/narrow gap for bringing the RPC resolution below the 10ps scale. There is no clear-cut direction... but there is also no clear show-stopper!!.

With the essential collaboration of

Sub-100 picosecond charged particle timing with MicroMegas a proof of concept

representing:

L. Ropelewski, E. Oliveri, F. Resnati, Sebastian White, R. Veenhof (CERN) I.Giomataris, T. Papaevangelu, T. Gustavsson, E. Delagnes, E. Ferrer, A. Peyaud (CEA/Saclay) D. Gonzalez-Diaz(Zaragoza) G. Fanourakis (Demokritos) K. McDonald, C. Lu & Sebastian White (Princeton) for RD51 common fund project: "Fast Timing for High Rate Environments: a MicroMegas Solution"- awarded 3/2015

> Rogelio Palomo (Univ. Sevilla, ETSI) Joaquín B. González (ETSI-CERN)

Appendix

average voltage signals created by single electrons entering the MM

not very far from experimental data!

typical signals in the bulk detector (random selection)

average over 1000 primary photo-electrons (E_{drift}=10kV/cm)

important MC technical information

The arrival times of the electrons at the MM (after a random walk in the drift) MC can be computed analytically. This determines the 'physical jitter'. Note: even in absence of multiplication it is not a Gaussian although its rms approaches $D_L^*/v_d \sqrt{gap!}$.

analysis example: typical fitting routine

some small 1-2% 3-sigma tails always present

<u>response for typical conditions (**bulk**)</u> (some technicalities related to analysis)

fixed threshold

constant fraction

CFD introduces some correlation with amplitude

Response to single p.e.

- > Strong attenuation, so that events with no pulse appear
- > UV light from continuous source (candle)

0.08F

Microbulk

Bulk 128

Signal modeling by D. Gonzalez Diaz & F. Resnati

influence of the detector technology

influence of the detector capacitance (bulk)

Note: signal integrity does affect timing directly, but S/N goes down by about 1/10!!

influence of the mesh transmission

Optimum gas mixtures in timing Micromegas?

Look for the minimum time spread ('fastest mixture') at any given gain

Simulations from Rob Veenhof $(C_2H_2F_4$ from data)

Notes:

- Working fields in the MM for pure quenchers need to be about x2 higher. May limit the gain in case of defects.
- Drift fields for pure quenchers need to be about x3 higher.
- Dissociative attachment for CO_2 and freons expected to be compensated by gain. Needs to be verified.

Micromegas in other modes

Micromegas time scales

The electron multiplication takes place in high E field (> 20 kV/cm) between the anode (strips, pads) and the mesh in one stage

small amplification gap (50-150 µm)

- fast signals (~ 1 ns)
- short recovery time (~50 ns)
- high rate capabilities (> MHz/cm²)
- high gain (up to 10^5 or more)

Time response is limited from the continuous ionization on the drift gap

note 2 (what about bulk?)

(no simulations yet)

assume these values in the following (if nothing else is said: $E_{drift} = 10 kV/cm$)

note 1

 $m^* = T(E_{drift}, E_{amp}) \times m_{drift}(E_{drift}) \times m_{MM}(E_{MM}) \times \epsilon_{ext}(E_{drift})$?

input parameters for simulations: Ne–C₂H₆ (Magboltz, S. F. Biagi)

(Xe-TMA published data with Garfield++/microscopic)

Modelling the behaviour of microbulk Micromegas in Xenon/trimethylamine gas E. Ruiz-Choliz et al., NIM A, 799 (2015) 137-146.

