MRPC mass production and test for the BESIII E-TOF upgrade

Zhen Liu, Yongjie Sun, Cheng Li, Zebo Tang, Ming Shao

State Key Laboratory of Particle Detection and Electronics
University of Science and Technology of China

The end-cap Time-of-Flight (E-TOF) system of Beijing Spectrometer (BESIII) is being upgraded based on the Multi-gap Resistive Plate Chamber (MRPC) technology. The mass production and test of the MRPC modules are carried on by the TOF group of USTC. The test results show that all the produced MRPCs have stable performance and meet the quality standard in mass production. After subtracting the contribution from the electronics and muon momentum effect, an intrinsic time resolution of better than 60 ps can be achieved for the cosmic rays (MIPs).

Design and Production

The BESIII is a high precision general-purpose detector designed for high luminosity $\mathrm{e}^{+} \mathrm{e}^{-}$collisions in the τ-charm energy region at the Beijing Electron Positron Collider (BEPCII). The two BESIII end-cap rings will be fully covered by 2×36 trapezium MRPC modules

The goal of the BESIII E-TOF upgrade

- An overall time resolution of 80 ps for MIPs The K / π separation (2σ) momentum range. can be extended from $1.1 \mathrm{GeV} / \mathrm{c}$ to $1.4 \mathrm{GeV} / \mathrm{c}$. The intrinsic MRPC time resolution (including the electronics) is required to be better than 55 ps .

The MRPC modules

- 2×6 uniform gas gaps with 0.22 mm thick
- 12 double-end readout strips with the length arranging from 9.1 cm to 14.1 cm and 2.4 cm wide.
- The gap between any adjacent strips is 4 mm - The total thickness is less than 20 mm .

In total, 72 MRPC modules have been produced and completely installed in BESIII in 2015

Performance

Cosmic ray platform and test method

Time Resolution

Slewing correction and test result

- The average time is used to determine the time resolution of the double-end readout MRPCs.
- The time resolution of all the strips of the entire MRPC module is measured.
- After the T-TOT correction, the average time resolution of each strip (including the electronics) is shown in the left figure.

The T-TOT correlation for each MRPC strip is fitted by the function below. The mean time of the other two MRPC modules is used as the reference time (Tr).

$\begin{aligned} & \text { M1 (Tr M2 M3) } \\ & \text { M2 (Tr M3 M4) }\end{aligned}$
$\begin{aligned} & \text { M2 (Tr M3 M4) } \\ & \text { M3 (Tr M1 M2 }\end{aligned}$
M4 (Tr M2 M3)

Slewing correction function: $f(x)=p_{0}+\frac{p_{1}}{\sqrt{x}}+\frac{p_{2}}{x}+\frac{p_{3}}{x \sqrt{x}}+\frac{p_{4}}{x^{2}}$

Muon Momentum Effects

Choosing different module combinations as reference (Tr) gives different time resolution, which mainly caused by the momentum distribution of the cosmic ray muons. Consider one module:

Estimate:

$\sigma_{\text {exp }}^{2}=\sigma_{i}^{2}+2 \sigma_{p}^{2}+\sigma_{e}^{2}$
σ_{i} :intrinsic time resolution; σ_{p} :muon momentum effects;
σ_{e} :intrinsic electronics time resolution together with TDC
$\sigma_{i}=\sqrt{69.67^{2}-2 \times 15^{2}-30^{2}}=59$ ps

