Charge Distribution dependency on gap thickness of CMS endcap RPC

Sung Park, KODEL, Korea Univ On behalf of the CMS RPC group

- 1. Motivation
- 2. Measurement of charges in 6 different gap thickness
- 3. Conclusion

The present detector R&D is for future CMS RPCs at high backgrounds \checkmark In PHASE II upscope, we need new endcap RPCs in 1.6 < $|\eta|$ <2.1(2.4) by 2023.

Direction of R & Ds for high-n CMS RPCs (at RE3/1-and RE4/1)

Higher rate capability can be achieved if

- ✓ Lower resistivity of electrode → Rate capability ~ 1/ ρ
- ✓ Use smaller avalanche charges with a lower digitization threshold
 - \rightarrow Better for reducing the probability of aging due to high-rate background
 - \rightarrow To guarantee the longevity of the RPC gaps

For threshold dependency with large size chambers (Kyongsei's talk)

- 1) Double gap with 1.6mm gas gap thickness
- 2) Multigap 4 gaps with 0.8mm gas gap thickness

For charge dependency with small size chambers:

1) Six double gaps with 0.2mm steps from 2.0mm to 1.0mm

Six RPCs at KODEL

Six RPCs with different gap thickness:

1.0, 1.2, 1.4, 1.6, 1.8, 2.0 mm

Operation of 6 Gaps

- 1 Efficiency & Cluster size of each gap thickness
- 2 H.V & E-field vs. gap thickness
- 3 Charge distribution of each gap thickness
- 4 Models for charge distributions

Efficiency in 2.0mm

	H.V(kV)	
Eff 50%	9.17	
Eff>95%	9.39	

For 2016 RPCWorkshop

Efficiency in 1.8mm

Efficiency in 1.6mm

Efficiency in 1.4mm

	H.V(kV)	
Eff 50%	6.94	
Eff>95%	ff>95% 7.21	

For 2016 RPCWorkshop

Efficiency in 1.2mm

Efficiency in 1.0mm

H.V vs. gap size

gap(mm)	H.V_50%(kV)	H.V_95%(kV)	
1.0	5.38	5.66	
1.2	6.16	6.50	
1.4	6.94	7.21	
1.6	7.71	7.99	
1.8	8.47	8.78	
2.0	9.17	9.39	

H.V vs. gas gap size

E_field vs. gap size

E_field vs. gap size

gap(mm)	E_fields@50% (kV/mm)	E_fields@95% (kV/mm)
1.0	5.38	5.66
1.2	5.13	5.42
1.4	4.96	5.15
1.6	4.82	4.99
1.8	4.71	4.88
2.0	4.59	4.70

Charge distribution in 2.0mm

Charge distribution in 1.8mm

Charge distribution in 1.6mm

Charge distribution in 1.4mm

Charge distribution in 1.2mm

Charge distribution in 1.0mm

Charge Distributions in H.V & E-field

M. Abbrescia, et al., Nucl. Phys. B 78 (1999) 459 G. Aielli, et al., NIM A 508 (2003) 6

Charge distribution of 2.0mm gap fitting w the logistic function's cumulative

For 2016 RPCWorkshop

Charge distribution of 1.8mm gap fitting w the logistic function's cumulative

Charge distribution of 1.6mm gap fitting w the logistic function's cumulative

Charge distribution of 1.4mm gap fitting w the logistic function's cumulative

Charge distribution of 1.2mm gap fitting w the logistic function's cumulative

Charge distribution of 1.0mm gap fitting w the logistic function's cumulative

Summary of charge distributions

Gap (mm)	H.V_95%(kV) Th(1.0mV)	<q_e>(pC)</q_e>	V_O(kV) in logistic fun.
2.0	9.39	1.658+/-0.108	9.36
1.8	8.77	1.621+/-0.072	8.80
1.6	7.99	1.607+/-0.080	7.91
1.4	7.21	1.473+/-0.069	7.05
1.2	6.50	1.448+/-0.049 (94%)	6.36
1.0	5.66	1.423+/-0.079	5.62

Conclusion

- 1. Charge distribution dependency on gap size behaves as expected
- 2. Charge growing exponentially fast at lower E-fields, slow at saturated higher E-fields.
- 3. Charge distribution indicates threshold setting
- 4. A smaller avalanche charge can be obtained by a lower threshold, allowing to lower H.V.
- 5. Fit of charge distribution <q_e> with logistic fun. performed
- 6. Further works in progress