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Muon system requirements[2]
CMS Technical Proposal (1994)[1]

Goals: Muon identification, muon trigger and (signed) muon pT measurement

• muon identification: 16λ of material without acceptance losses

• muon trigger: combination of precise muon chambers (fast electronics) and fast dedicated
trigger detectors provide unambiguous bx identification with sharp pT thresholds

• stand-alone muon pT resolution: ∆pT/pT = 8-15% at 10 GeV/c & 20-40% at 1 TeV/c

• global muon pT resolution: ∆pT/pT = 1-1.5% at 10 GeV/c up to 6-17% at 1 TeV/c
(matching track at <1 mm in bending plane (& <10 mm non-bending) at 1 TeV/c)

• charge assignment: 99% correct up to 1 TeV/c

• capability of withstanding high radiation background
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• global muon pT resolution: ∆pT/pT = 1-1.5% at 10 GeV/c up to 6-17% at 1 TeV/c
(matching track at <1 mm in bending plane (& <10 mm non-bending) at 1 TeV/c)

• Run-1: ∆pT/pT = 1.3-2.0% (barrel) and < 6% (endcap) for 20 < pT <100 GeV/c

• Run-1: ∆pT/pT < 10% (barrel) for pT <1 TeV/c muons
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Spatial resolution of muon detectors[2]

CMS Muon Technical Design Report(1997)[3]
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Spatial resolution determined by MS

• σdet � MS limit (max 15% det.)

DT 100 µm (r − ϕ) and 150 µm
(r − z)

CSC 75 µm (ME1/1 & ME1/2) and
150 µm

RPC Correct BX-id is more important
⇒ resolution of O(1 cm)

• Spatial resolution ≈ MS (for a
100 GeV/c muon) gives

deterioration of
√

2 = 40%
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Background rates and dose during High Luminosity LHC

Overview[4][5]

• FLUKA simulations → mean
rate around 0.5 kHz/cm2 in
RE3/1

• At 0.5 kHz/cm2 and
〈q〉/avalanche of 20 pC,
integrated charge reach ∼
0.6 C/cm2

→ Including safety factor 3, rate
capability around
2 kHz/cm2 required
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Forward RPC detector requirements

The rate capability of RPCs can be improved in various ways by [6]...:
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... reducing the average charge deposition

• Transfer part of the signal amplification from the gas to the front-end
electronics

• Reduced voltage drop on the electrode plates
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Forward RPC detector requirements

The rate capability of RPCs can be improved in various ways by [6]...:

... reducing the electrode resistivity ρ

• Direct effect of reducing the recovery time

• Increases the rate capability proportionally

... reducing the average charge deposition

• Transfer part of the signal amplification from the gas to the front-end
electronics

• Reduced voltage drop on the electrode plates

• Reduced period of inefficiency

• Reduced ageing processes

... changing the detector configuration

• Change the electrode thickness

• Change the number of electrodes

• Increase the ratio of the induced signal to the moving charge in the gap
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Forward RPC detectors RE3/1 and RE4/1

Detector overview[4]

• Complement existing ME3/1
and ME4/1 CSC stations
→ improvement of the L1
muon trigger

• A total of 72 chambers,
spanning 20◦

• Will cover the region
1.8 <| η |< 2.5 divided into
5 η-partitions

• 192 read-out strips per
η-partitions

• Pitch ranging from 0.30 to
0.62 cm (present endcap
RPCs: 1.30 to 3.93 cm)
→ improvement of the
spatial resolution
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1 Forward RPC technologies under study

2 Forward RPC on-chamber electronics

3 Forward RPC R&D certification

4 Conclusion
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Low resistivity electrodes

Electrode material ρ( Ωcm) Institutes

HPL 0.5− 1× 1010 INFN

LRS glass 1010 IPNL-LLR-Tsinghua[7][8]

Vanadate glass 104 to 1016 Coe College-ANL-University of Iowa[9]

SiC based ceramics 107 to 1012 HZDR[10]

Ferrite ceramics 106 to 1013 CSIC-USC[11]

Key points

• High-Pressure Laminate is already industrially produced (lower cost, bigger
surfaces)

• Glass and ceramics can achieve lower resistivity values than Bakelite

• Glass and ceramics have very smooth surfaces providing very consistent
electric fields
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Changes to the RPC detector configuration

Multi-gap HPL[12]

• Modified standard bi-gap configuration using 2 double-gaps

• Thickness of the four gaps is 0.8 mm

• Same electrodes and front-end electronics as standard CMS chambers

• Efficiency for cosmic muons vs. operating voltage (with and without

irradiation via 137Cs γ-ray source)
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Changes to the RPC detector configuration

Single and Multi-gap glass RPCs[7][8]

• Tests performed with a rate capability exceeding 10 kHz/cm2

• Time resolution better than 100 ps for a multi-gap configuration
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High-amplification electronics

INFN SiGe low noise preamplifier[4]

• Number of channel: 3×1

→ new batch to cover full
η-partition + gRPC
prototype arriving

• ASIC: current CMS ASIC
scheme

• Preamplifier sensitivity:
11 mV/fC

• Low offset discriminators:
autotrig down to 4 fC

• Power consumption:
2 mW/channel

• Technology: BJT transistor
using SiGe
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High-amplification electronics

INFN SiGe low noise preamplifier[4]

• Developed in the framework
of the muon system upgrade
of the ATLAS experiment

• Performance comparison of
CMS chambers with standard
CMS electronics and an early
prototype

→ Shift of about 460 V in the
efficiency curves

→ Average charge for 90%
efficiency is reduced from
20 pC to about 3 pC
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High-amplification electronics

PET TIme-of-flight
Read-Out Chip[13]

• ASIC: 16 channels -
SiGe

• Fast low impedance
preamplifier: variable
gain (8 bits/channel)

• Semi-digital readout:
3 thresholds

• Low offset
discriminators:
autotrig down to
10 fC up to 10 pC

• Power consumption:
1 µW/DAQ
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High-amplification electronics

PET TIme-of-flight
Read-Out Chip[13]

• Front-end electronics
originally designed for
time-of-flight
measurements to
readout silicon
photomultipliers
(SiPMs)

• Combines a very fast
and low-jitter trigger
with an accurate
charge measurement

• Has already been used
for testing glass RPCs

• Interface to the CMS
DAQ chain is under
investigation
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Forward RPC R&D certification

The Gamma Irradiation Facility (GIF++)

• Performance tests with high radiation back-
ground

• Longevity tests on CMS present muon system
detectors and new R&D efforts

• Irradiation for ∼ 17 months with an acceler-
ation factor 2

Life-time could depend on

• The integrated charge

• The long-term operation of RPCs with a
fluoride-rich gas (HF production[14])

• The material and component degradation

→ The first results will be presented during S. Carrillo’s talk (4:50pm 25/02)
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Outlooks

• The RPC community is moving forward into conceiving and testing new RPC
prototypes using different electrode materials, geometries or electronics.

• A worldwide effort is put into making new specific electrode materials for
RPCs as examples mentioned (this workshop is a chance to have status
report from the research teams).

• The final technique adopted may combine the benefits of the different
approaches.

• Although, it is needed to urgently address the issue of the installation of
REX-1 in LS3.

• Moreover, we need to test several options for the electronics and to establish
contact with CMS electronics and trigger groups.

• The first GIF++ test beam results are appearing.
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