Description and simulation of physics of Resistive Plate Chambers

Vincent Français

Laboratoire de Physique Corpusculaire de Clermont Ferrand

Université Blaise Pascal - CNRS/IN2P3

1 Resistive Plate Chambers

- Basic design
- Gaseous mixture
- Context and Objectives

The physics behind and its simulation

- Avalanche modelisation
- Diffusion
- Space Charge Effect
- Signal Induction

Preliminary results

4 Conclusion and perspective

1 Resistive Plate Chambers

- Basic design
- Gaseous mixture
- Context and Objectives

The physics behind and its simulation

- Avalanche modelisation
- Diffusion
- Space Charge Effect
- Signal Induction

3 Preliminary results

4 Conclusion and perspective

- Gap is 12 mm wide
- Glass anode and cathode ($10^{12} \Omega cm, \epsilon_r \sim 7$), 7 and 11 mm wide
- HV of 6.9 kV between plates (57.5 kV/cm)

	T
ΛZ	Anode
	Gas Gap
	Cathode

Operation

- $\bullet~$ Particle crossing the detector $\rightarrow~ionisation$
- Freed electric charges drift and multiply under the influence of the HT ⇒ electronic (Townsend) avalanche
- Electric signal arise on the electrode by induction

- The gaseous mixture is maybe the most vital part of a RPC as it influences many key characteristics :
 - \rightarrow ionisation (number of electrons freed)
 - → multiplication gain
 - \rightarrow electron drift velocity (influences signal amplitude and timing)
- usually mixture is composed of 3 gases :
 - 1. ionizing gas $\sim 95\%$
 - 2. UV quencher gas $\sim 4\%$
 - 3. electron quencher gas $\sim 1\%$

- mixture used for this presentation :
 - **1.** TFE $C_2H_2F_4$ 93%
 - **2.** CO₂ 5%
 - **3**. *SF*₆ 2%

State of the art and objectives

- $\bullet\,$ Monte-Carlo simulation is essential in detector development $\to\,$ allows to predict characteristics and responses
- Simulations for RPC are not widespread and often incomplete
 - $\hookrightarrow\,$ unadapted mathematical distribution (Polya) which lacks physical interpretation
 - \hookrightarrow overlook important phenomena

- modelise the main processes of an electronic avalanche
- develop a full, fast and multi-threaded Monte-Carlo simulation
- portable, easily modifiable and usable on various hardwares

1 Resistive Plate Chambers

- Basic design
- Gaseous mixture
- Context and Objectives

The physics behind and its simulation

- Avalanche modelisation
- Diffusion
- Space Charge Effect
- Signal Induction

Preliminary results

4 Conclusion and perspective

Ionisation

- $\bullet\,$ charged particle crossing the gas gap $\rightarrow\,$ ionisation
- each ionisation event ⇒ electron clusters
- charge deposit characterized by two things
 - $\rightarrow\,$ the number of clusters by unit of length

 the probability distribution for the number of electrons by cluster

Electron multiplication

- electrons drift under the influence of the electric field and multiply by interaction with gas molecules (avalanche)
- evolution of the number of electrons conditioned by two coefficient :

Townsend coefficient $\alpha \rightarrow$ probability to multiply

Attachment coefficient $\eta \rightarrow$ probability to get attached

Avalanche development model (W. Riegler and C. Lippmann)

• average numbers of e^- and positive ions :

$$\bar{n}(x) = e^{(\alpha - \eta)x}$$
$$\bar{p}(x) = \frac{\alpha}{\alpha - \eta} \left(e^{(\alpha - \eta)x} - 1 \right)$$

 $\bullet\,$ stochastic multiplication and attachment for one e^-

$$n = \begin{cases} 0, & s < k\frac{\bar{n}(x) - 1}{\bar{n}(x) - k} \\ 1 + floor\left[\ln\left(\frac{(\bar{n}(x) - k)(1 - s)}{\bar{n}(x)(1 - k)}\right) \cdot \frac{1}{\ln\left(1 - \frac{1 - k}{\bar{n}(x) - k}\right)} \right], & s > k\frac{\bar{n}(x) - 1}{\bar{n}(x) - k} \end{cases}$$

with s a random number $\in [0,1), \, k=\eta/\alpha$

here x is the drifted distance

- gas gap divided into N steps of $\Delta x~(\sim \mu m)$
- clusters are put into their respective bin

Case of one cluster at x_0

- n_0 electrons present at x_0
- each one of the n_0 electrons will multiply according to the previous formula and we find n_1 electrons at $x = x_0 + \Delta x$
- In the same way, the n_1 electrons will multiply and we find n_2 electrons at $x = x_0 + 2\Delta x$

$\rightarrow\,$ This procedure is iterated until all the electrons reach the anode

Multiplication procedure

Diffusion

• Thermal diffusion motion superposed by drift motion \Rightarrow anisotropic diffusion

$$\varphi_L = \frac{1}{\sqrt{2\pi\sigma_L}} \exp\left(-\frac{(z-z_0)^2}{2\sigma_L^2}\right)$$
$$\varphi_T = \frac{1}{\sigma_T^2} \exp\left(-\frac{(r-r_0)^2}{2\sigma_T^2}\right)$$

 diffusion characterized by their diffusion coefficient D_L and D_T and drifted distance l

$$\sigma_{L,T} = D_{L,T} \sqrt{l}$$

Transverse diffusion

⇒ Transversal : we consider the charges to be contained in a disk with a Gaussian radial distribution (φ_T) with $\sigma = D_T \sqrt{l}$ where *l* is the drifted distance

Space Charge Effect

• When the number of charges in avalanches is high enough they influence the electric field and thus the values of α and $\eta \Longrightarrow$ Space Charge Effect

Space Charge Effect

• When the number of charges in avalanches is high enough they influence the electric field and thus the values of α and $\eta \Longrightarrow$ Space Charge Effect

Approximation to *feel* its impact : charges lie in sphere of radius r_d

$$E_r = \frac{e_0 \, n_e}{4\pi \, \varepsilon_0 \, r_d^2}$$

 $\begin{array}{l} n_e = 10^6 \ r_d = 0.1 mm \\ \Rightarrow E_r = 1.5 \, kV/cm \end{array}$

3% of typical RPC field (~ $50 \, kV/cm$) $\rightarrow 10\%$ change in coefficients (and so in multiplication gain)

- Space Charge Effect leads to a saturation of the number of produced electrons
- Fully modelised by computing the field of all the charges in gas gap

Space Charge Effect illustration

Signal Induction

 Output signal is only due to the movement of electrons in the electric field

- → electrons in gas are not collected on electrodes as they are absorbed by resistive layer
- \rightarrow electrons movement induces charges on electrodes
- → ions don't contribute due to their small drift velocity

• We use the generalised Ramo's theorem to compute induced signals

Resistive Plate Chambers

- Basic design
- Gaseous mixture
- Context and Objectives

2 The physics behind and its simulation

- Avalanche modelisation
- Diffusion
- Space Charge Effect
- Signal Induction

Preliminary results

4 Conclusion and perspective

Preliminary results

• Cathode 0.11 cm, Anode 0.07 cm, Gap 0.12 cm, HV 57.5 kV/cm • Glass @ $10^{12} \Omega cm$

Preliminary results

• Cathode 0.11 cm, Anode 0.07 cm, Gap 0.12 cm, HV 57.5 kV/cm • Glass @ $10^{12} \Omega cm$

Resistive Plate Chambers

- Basic design
- Gaseous mixture
- Context and Objectives

2) The physics behind and its simulation

- Avalanche modelisation
- Diffusion
- Space Charge Effect
- Signal Induction

3 Preliminary results

4 Conclusion and perspective

Conclusion and perspective

- Resistive Plate Chambers are widely use, yet there is no proper simulation
- Working on a model taking into account the main physics processes
- Still work in progress but taking shape
- Aim to be a basic code for further RPC development and to be hooked in a more global detector simulation chain
- Room for improvements
 - $\rightarrow\,$ main bottleneck comes from the pseudo-random numbers generation
 - → using GPU (CuRand or Thrust) PRNG may give a significant speedup

BACKUPS

The simulation and libraries used

- Compiled on a server with an old GCC (4.4.7) \Rightarrow No C++11 atm
- UNIX POSIX thread library
- Using the ThreadFactory (P. Schweitzer) to spawn threads and allocate events (one thread reserved for output writing)
- RngStreams (L'Ecuyer) for random number generation
- Using Garfield framework (rev. 418) with HEED (1.01) and Magboltz (9.01) for electron gas transport parameters and particle-gas interactions
- Gnu Scientific Library (QUADPACK) for integral computation, can also use python with scipy (more precise but much slower)
- TinyXml2 for configuration file parser
- Except Garfield (which use ROOT) and GSL, doesn't rely on a lot of libraries, all included in src

Electronic avalanche

Avalanche development model continued

$$n = \begin{cases} 0, & s < k \frac{\overline{n}(x) - 1}{\overline{n}(x) - k} \\ 1 + \ln\left(\frac{(\overline{n}(x) - k)(1 - s)}{\overline{n}(x)(1 - k)}\right) \frac{1}{\ln\left(1 - \frac{1 - k}{\overline{n}(x) - k}\right)}, & s > k \frac{\overline{n}(x) - 1}{\overline{n}(x) - k} \end{cases} \quad \alpha, \eta > 0$$

$$n = \begin{cases} 0, & s < \frac{\alpha x}{1+\alpha x} \\ 1+\ln\left[\left(1-s\right)\left(1+\alpha x\right)\right] \frac{1}{\ln\left(\frac{\alpha x}{1+\alpha x}\right)}, & s > \frac{\alpha x}{1+\alpha x} \end{cases} \quad \alpha = \eta$$

$$n = \begin{cases} 0, & s < e^{(-\eta x)} \\ 1, & s > e^{(-\eta x)} \end{cases} \quad \alpha = 0$$

CPU-intense procedure \Rightarrow very time consuming !

- $\rightarrow\,$ Unadapted to the simulation of a large number of event
- \rightarrow We make use of the Central Limit Theorem :

when n_i is big enough we draw n_{i+1} from a gaussian

$$\mu = n_i \bar{n}(\Delta x) \qquad \sigma_{CLT} = \sqrt{n_i} \sigma(\Delta x)$$
$$\sigma^2(\Delta x) = \left(\frac{1+k}{1-k}\right) \bar{n}(\Delta x) \left(\bar{n}(\Delta x) - 1\right)$$

Central Limit theorem

Primary ionisation

Space Charge Effect - potential

 $D(\kappa)$

$$\begin{split} \Phi(r,\phi,z,r',\phi',z') &= \frac{Q}{4\pi\varepsilon_2} \bigg[\frac{1}{\sqrt{P^2 + (z-z')^2}} - \frac{(\varepsilon_1 - \varepsilon_2)}{(\varepsilon_1 + \varepsilon_2)\sqrt{P^2 + (z+z')^2}} \\ &- \frac{(\varepsilon_3 - \varepsilon_2)}{(\varepsilon_3 + \varepsilon_2)\sqrt{P^2 + (2g-z-z')^2}} \\ &+ \frac{1}{(\varepsilon_1 + \varepsilon_2)(\varepsilon_2 + \varepsilon_3)} \int_0^\infty d\kappa \ J_0(\kappa P) \ \frac{R(\kappa,z,z')}{D(\kappa)} \bigg] , \\ &\quad 0 \le z \le g ; \\ R(\kappa;z,z') &= \frac{(\varepsilon_1 + \varepsilon_2)^2(\varepsilon_2 + \varepsilon_3)^2 \left[e^{\kappa(-2p-2q+z-z')} + e^{\kappa(-2p-2q-z+z')}\right] - (\varepsilon_1 + \varepsilon_2)^2(\varepsilon_2 - \varepsilon_3)^2 e^{\kappa(-4g-2q+z+z')} - (\varepsilon_1 + \varepsilon_2)^2(\varepsilon_2 - \varepsilon_3)^2 e^{\kappa(-4g-2q+z+z')} - (\varepsilon_1 + \varepsilon_2)^2(\varepsilon_2 - \varepsilon_3)^2 e^{\kappa(-4g-2q+z+z')} - (\varepsilon_1^2 + \varepsilon_2)^2(\varepsilon_2 - \varepsilon_3)^2 e^{\kappa(-4g+z+z')} + (\varepsilon_1^2 - \varepsilon_2)(\varepsilon_2 - \varepsilon_3)(e^{-2\kappa(p-g)} - e^{-2\kappa(q+g)}) & (\varepsilon_1^2 - \varepsilon_2)^2(\varepsilon_2 - \varepsilon_3)^2 \left[e^{\kappa(-2p-2q-z-z')} + e^{\kappa(-2p+z-z')} + e^{\kappa(-2p-z+z')}\right] - (\varepsilon_1 + \varepsilon_2)(\varepsilon_2 - \varepsilon_3)(e^{-2\kappa(p-g)} - e^{-2\kappa(q+g)}) & (\varepsilon_1 - \varepsilon_2)^2(\varepsilon_2^2 - \varepsilon_3^2) e^{\kappa(-2g-2q-z-z')} + e^{\kappa(-2p+z-z')} + e^{\kappa(-2p-zq-z-z')} + (\varepsilon_1^2 - \varepsilon_2)^2(\varepsilon_2 - \varepsilon_3)^2 e^{\kappa(-2g-2q-z-z')} + e^{\kappa(-2p-2q-z-z')} + e^{\kappa(-2p-zq-z-z')} + (\varepsilon_1^2 - \varepsilon_2)^2(\varepsilon_2^2 - \varepsilon_3^2) e^{\kappa(-2g-2q-z-z')} + e^{\kappa(-2p-zq-z-z')} + (\varepsilon_1^2 - \varepsilon_2)^2(\varepsilon_2^2 - \varepsilon_3^2) e^{\kappa(-2g-2q-z-z')} + e^{\kappa(-2g-2p-2q-z-z')} + (\varepsilon_1^2 - \varepsilon_2)^2(\varepsilon_2^2 - \varepsilon_3^2) e^{\kappa(-2g-2q-z-z')} + e^{\kappa(-2g-2p-2q-z-z')} + (\varepsilon_1^2 - \varepsilon_2)^2(\varepsilon_2^2 - \varepsilon_3^2) e^{\kappa(-2g-2q-z-z')} + e^{\kappa(-2g-2p-2q-z-z')} + (\varepsilon_1^2 - \varepsilon_2)^2(\varepsilon_2^2 - \varepsilon_3^2) e^{\kappa(-2g-2q-z-z')} + e^{\kappa(-2g-2p-2q-z-z')} + (\varepsilon_1^2 - \varepsilon_2)^2(\varepsilon_2^2 - \varepsilon_3^2) e^{\kappa(-2g-2q-z-z')} + e^{\kappa(-2g-2p-2q-z-z')} + (\varepsilon_1^2 - \varepsilon_2)^2(\varepsilon_2^2 - \varepsilon_3^2) e^{\kappa(-2g-2q-z-z')} + e^{\kappa(-2g-2p-2q-z-z')} + (\varepsilon_1^2 - \varepsilon_2)^2(\varepsilon_2^2 - \varepsilon_3^2) e^{\kappa(-2g-2q-z-z')} + (\varepsilon_1^2 - \varepsilon_2)^2(\varepsilon_2^2 - \varepsilon_3^2) e^{\kappa(-2g-2q-z-z')} + (\varepsilon_1^2 - \varepsilon_2)^2(\varepsilon_2^2 - \varepsilon_3^2) e^{\kappa(-2g-2q-z-z')} + e^{\kappa(-2g-2p-2q-z-z')} + (\varepsilon_1^2 - \varepsilon_2)^2(\varepsilon_2^2 - \varepsilon_3^2) e^{\kappa(-2g-2q-z-z')} + (\varepsilon_1^2 - \varepsilon_2^2 - \varepsilon_2^2) e^{\kappa(-2g-2q-z-z')} + (\varepsilon_1^2 - \varepsilon_2^2 - \varepsilon_2^2) e^{\kappa(-2g-2q-z-z')} + (\varepsilon_1^2 - \varepsilon_2^2 - \varepsilon_2^2 - \varepsilon_2^2) e^{\kappa(-2g-2q-z-z')} + (\varepsilon_1^2 - \varepsilon_$$

Space Charge Effect computation

• The unit charge is assumed to be contained in a disc perpendicular to the *z*-axis, so its electric field is

$$\overline{E}(z,l,z') = -\int_0^\infty \varphi_T(r',l) \ \frac{\partial \phi(z,r',z')}{\partial z} \ r' dr'$$

• Then the total space charge field at *z* is given by summation of all the discs :

$$E_{SC}(z) = \sum_{n=0}^{N} q_n \overline{E}(z_n, l_n, z'_n)$$

Very time consuming !

Space Charge Effect

- $\rightarrow\,$ Need to compute an integral inside another integral (semi improper) $\Rightarrow\,$ Very time consuming
- $\rightarrow\,$ Values of \overline{E} are loaded in memory from a pre-computed table. Using interpolation during simulation

$$i = e_0 E v_e$$

- \hookrightarrow doesn't hold in case we have resistive materials \Longrightarrow time-dependent fields
- ⇒ Maxwell's equations in quasi-static approximation, for medium with time- and space-dependent permittivity and conductivity (sparing some ugly algebra we have)

$$i(t) = \frac{Q}{V_0} \int_0^t E_{\Psi}(\vec{x}(t'), t - t')\dot{x}(t')dt'$$

• \vec{E}_{Ψ} is the weighting field, ie the field in detector if all conductors grounded but one put to voltage V_0 . Depends only on detector geometry

• single gap chamber with resistive layers of permittivity $\varepsilon_{rl} = \varepsilon_r \varepsilon_0$, gas of $\varepsilon_q \sim \varepsilon_0$

$$\frac{E_{\Psi}(t)}{V_0} = \frac{\varepsilon_r}{(d_{r_1} + d_{r_2}) + \varepsilon_r d_g} \delta t$$

$$i(t) = e_0 N(t) v_e \frac{\varepsilon_r}{(d_{r_1} + d_{r_2}) + \varepsilon_r d_g}$$

Ramo's theorem

• playing with Green's theorem with potentials defined above we get

$$Q_A = -e_0 \cdot V'_e$$

$$\dot{e} = \frac{dQ_A}{dt} = -e_0 \cdot \frac{dV'_e}{dt} = -e_0 \cdot \frac{\partial V'_e}{\partial x} \frac{dx}{dt}$$

$$i = e_0 E v_e$$

- Average execution time between 1 and 8 mins
 - $\rightarrow\,$ Depends heavily on detector geometry and HV
- Main bottleneck : Pseudo-random number generation
 - $\rightarrow\,$ need to draw a random number by electron at each simulation step
 - $\rightarrow\,$ typically 500-600 simulation steps, at its peak an avalanche can contain up to 10^8 electrons
 - $\,\,\hookrightarrow\,\,$ GPU computing could be a solution

Pseudo-Random Number Generation

- Parallel (multi-thread) simulation \Rightarrow each thread compute an event
- Each thread needs to have its own independent stochastic streams to achieve reproducibility and avoid stochastic streams overlap
- We use the RngStreams package (MRG32k3a) by L'Ecuyer
 - $\rightarrow\,$ Produces 2^{64} non-overlapping streams of length 2^{127}
- Performance of RngStreams (i5-3230M CPU @ 2.60GHz) :

 10^6 numbers : ~0.45sec

 $10^7 \ \mathrm{numbers}$: ${\sim} \mathrm{1sec}$

 10^8 numbers : ~3.3sec

 10^9 numbers : ~32sec

 \rightarrow hence the interest of using CUDA from NVidia Cuda developer site

11.0.1 on Intel SandyBridge 6-core F5-2620 @ 2.0 GH:

cuRAND: Up to 75x Faster vs. Intel MKL