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Basic single-gap design

@ Gapis 12 mm wide
@ Glass anode and cathode (10'2 Q¢m, €, ~ 7), 7 and 11 mm wide

@ HV of 6.9 kV between plates ( 57.5 kV/cm)

Gas Gap

Cathode
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@ Particle crossing the detector — ionisation

@ Freed electric charges drift and multiply under the influence of the
HT = electronic (Townsend) avalanche

@ Electric signal arise on the electrode by induction
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lonizing
particle

~ Electron
multiplication

HV Al fail
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Gaseous mixture

@ The gaseous mixture is maybe the most vital part of a RPC as it
influences many key characteristics :
— ionisation (number of electrons freed)
— multiplication gain
— electron drift velocity (influences signal amplitude and timing)

@ usually mixture is composed of @ mixture used for this

3 gases : presentation :
1. ionizing gas ~ 95% 1. TFE C2HyF, 93%
2. UV quencher gas ~ 4% 2. CO2 5%

3. electron quencher gas ~ 1% 3. SFs 2%



State of the art and objectives

@ Monte-Carlo simulation is essential in detector development —
allows to predict characteristics and responses

@ Simulations for RPC are not widespread and often incomplete
— unadapted mathematical distribution (Polya) which lacks physical
interpretation
— overlook important phenomena

@ modelise the main processes of an electronic avalanche
@ develop a full, fast and multi-threaded Monte-Carlo simulation

@ portable, easily modifiable and usable on various hardwares
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lonisation

@ charged particle crossing the gas gap — ionisation
@ each ionisation event = electron clusters
@ charge deposit characterized by two things

— the probability distribution for
the number of electrons by
cluster

— the number of clusters by
unit of length
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Electron multiplication

@ electrons drift under the influence of the electric field and multiply
by interaction with gas molecules (avalanche)

@ evolution of the number of electrons conditioned by two

coefficient :
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Avalanche development model (W. Riegler and C.

Lippmann)

@ average numbers of e~ and positive ions :

n(xr) = ela=mz

p(z) = ” i ; (e(o‘_n)”"’ — 1)

@ stochastic multiplication and attachment for one e~

0, s < kel

n(x

(2)=F
n(x)—k)(1—s n(z)-1
1+ floor lln <( dolien )> (1= = )] s

x
z)—
n(z)—k

with s a random number € [0,1), k = n/«

here x is the drifted distance )
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Multiplication procedure

@ gas gap divided into N steps of Az (~ um)
@ clusters are put into their respective bin

Case of one cluster at z

@ ny electrons present at xg

@ each one of the n( electrons will multiply according to the previous
formula and we find n; electrons at x = zp + Ax

@ In the same way, the n electrons will multiply and we find ny
electrons at x = xg + 2Ax

— This procedure is iterated until all the electrons reach the anode
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Multiplication procedure
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@ Thermal diffusion motion superposed by drift motion =
anisotropic diffusion
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Transverse diffusion

= Transversal : we consider the charges to be contained in a disk
with a Gaussian radial distribution (¢7) with o = D7v/1 where [ is
the drifted distance
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Space Charge Effect

@ When the number of charges in avalanches is high enough they
influence the electric field and thus the values of « and n =

Space Charge Effect
g )] e

E2<EO

+

EO
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Space Charge Effect

@ When the number of charges in avalanches is high enough they
influence the electric field and thus the values of « and n =
Space Charge Effect

ne = 10% ry = 0.1mm

= E, =15kV/cm

3% of typical RPC field (~ 50 £V/em)
— 10% change in coefficients (and so
in multiplication gain)

Approximation to feel its impact :
charges lie in sphere of radius ry4

€0 e

r = D)
dmegry

@ Space Charge Effect leads to a saturation of the number of
produced electrons

@ Fully modelised by computing the field of all the charges in gas
gap
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Space Charge Effect illustration
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Signal Induction

@ Output signal is only due to the movement of electrons in the
electric field
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@ We use the generalised Ramo’s theorem to compute induced
signals
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Preliminary results

@ Cathode 0.11 cm, Anode 0.07 cm, Gap 0.12 cm, HV 57.5 kV/cm
@ Glass @ 102 Qcem
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Preliminary results

@ Cathode 0.11 cm, Anode 0.07 cm, Gap 0.12 cm, HV 57.5 kV/cm
@ Glass @ 102 Qcem
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Conclusion and perspective

@ Resistive Plate Chambers are widely use, yet there is no proper
simulation

@ Working on a model taking into account the main physics
processes

@ Still work in progress but taking shape

@ Aim to be a basic code for further RPC development and to be
hooked in a more global detector simulation chain

@ Room for improvements
— main bottleneck comes from the pseudo-random numbers
generation
— using GPU (CuRand or Thrust) PRNG may give a significant
speedup
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BACKUPS
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The simulation and libraries used

@ Compiled on a server with an old GCC (4.4.7) = No C++11 atm

@ UNIX POSIX thread library

@ Using the ThreadFactory (P. Schweitzer) to spawn threads and
allocate events (one thread reserved for output writing)

@ RngStreams (LEcuyer) for random number generation

@ Using Garfield framework (rev. 418) with HEED (1.01) and
Magboltz (9.01) for electron gas transport parameters and
particle-gas interactions

@ Gnu Scientific Library (QUADPACK) for integral computation, can
also use python with scipy (more precise but much slower)

@ TinyXml2 for configuration file parser

@ Except Garfield (which use ROOT) and GSL, doesn't rely on a lot
of libraries, all included in src
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Electronic avalanche
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Avalanche development model continued

n(z)—1
07 s < kﬁ(:c)—k ~0
n= (7(x)—k)(1—s) 1 A(z)—1 a,n
1+In ( n(z)(1-k) ) ln(l_ﬁ(lx_)]ik) » 82 kﬁ(m)—k
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Central Limit theorem

CPU-intense procedure = very time consuming ! ]

— Unadapted to the simulation of a large number of event

— We make use of the Central Limit Theorem :

when n; is big enough we draw n;,; from a gaussian

uw=n;n(Ax) oorr = \/nio(Ax)

o2 (Az) = Gfi) A(Az) (A(Az) — 1)
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Central Limit theorem
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Primary ionisation
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Space Charge Effect - potential
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Space Charge Effect computation

@ The unit charge is assumed to be contained in a disc
perpendicular to the z-axis, so its electric field is

o o
E(z,1,7) = _/ or(r'1) 9¢(z,1",2") !
0 0z

@ Then the total space charge field at z is given by summation of all
the discs :

N
ESC(Z) = Z an(ZTb ln7 Z:z)
n=0

Very time consuming ! )
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Space Charge Effect

— Need to compute an integral inside another integral (semi
improper) = Very time consuming

— Values of E are loaded in memory from a pre-computed table.
Using interpolation during simulation
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Ramo’s theorem

1=¢egF v, J

— doesn’t hold in case we have resistive materials =
time-dependent fields

= Maxwell's equations in quasi-static approximation, for medium
with time- and space-dependent permittivity and conductivity
(sparing some ugly algebra we have)

i(t) = % /O Bo (3,1 — )i ()t

@ FEy is the weighting field, ie the field in detector if all conductors
grounded but one put to voltage V. Depends only on detector
geometry
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Weighting field

clectrode T
resistive layer
dr, ' 7| e single gap chamber with resistive
layers of permittivity e,; = ¢,.0,
. Tve , gas of ¢, ~ £

E\I;(t) _ Er 5t
1;Zs;1st1ve layer . - VO ( drl + dm) + gng
w

: Er
i(t) = eg N(t) ve

(dry +dry) + erdg
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Ramo’s theorem

Conductor

Conductor

o Make use of Green’s theorem
with volumes V (detector) and V,
(surrounding the electron)

e V is potential between
conductors (removing space V.),
V. potential including electron

e consider conductors are
grounded except A which is put
to 1V and electron is removed :
VoV V.= V!

e playing with Green’s theorem with potentials defined above we get

Qa=—ey- V!
_dQa _ Ve 9Vidz
Tt dt Y or dt

i=¢eqgEv,

37/24



Performance and bottlenecks

@ Average execution time between 1 and 8 mins
— Depends heavily on detector geometry and HV

@ Main bottleneck : Pseudo-random number generation
— need to draw a random number by electron at each simulation step
— typically 500-600 simulation steps, at its peak an avalanche can
contain up to 10® electrons
— GPU computing could be a solution
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Pseudo-Random Number Generation

@ Parallel (multi-thread) simulation = each thread compute an event

@ Each thread needs to have its own independent stochastic
streams to achieve reproducibility and avoid stochastic streams
overlap

@ We use the RngStreams package (MRG32k3a) by LEcuyer
— Produces 2% non-overlapping streams of length 2127

o Performance of RngStreams cuRAND: Up to 75x Faster vs. Intel MKL

(i5-3230M CPU @ 2.60GHz) : ‘“

108 numbers : ~0.45sec

o N & o » B

= CURAND
= MKL

Gsamples | sec

107 numbers : ~1sec

108 numbers : ~3.3sec

MRG32k3a MRG32K3a MRG32k3a

1 09 num be rs '~ stec Uniform Distribution Normal Distribution Log-Normal Distribution

- , ECCON,
- MKLILOT 200GHz

— hence the interest of using CUDA from Nvidia Cuda developer site
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