Resistive electrodes Decoupling surface from bulk material properties

Miguel Morales

Univ. de Santiago de Compostela, USC Instituto de Ciencia de Materiales de Madrid, CSIC Spain

Carlos Pecharromán

Instituto de Ciencia de Materiales de Madrid, CSIC Spain

Materials Research Group

Percolative ceramic/metal composites

 Plasmonic and metamaterials

Biomedical applications

Cutting tools

High rate resistive electrode requirements

- Resistivity [10⁸⁻⁹-10¹¹] Ω·cm.
- Low ageing
 - Electronic conductivity vs lonic conductivity
- High voltage breakdown
- Good surface quality
- Good mechanical properties
- Not very expensive

Materials from scratch

Some Resistive Electrodes

	Materials	Experiments
Glasses		
	Soda Lime Silicate Glasss (SLS Glass)	Hades, Belle
	Low Resistive Silicate Glass (LRS Glass)	CBM
Polymers		
	Bakelite	CMS, BaBar
Ceramics		
	Si ₃ N ₄ /SiC	CBM

Ferrite Ceramic Resistive Electrode

Electrical conductivity tuning

- Two conductivity tuning methods:
 - By composition
 - By thermal treatment
- Composition:
 - Resistivity goes from 10^6 to 10^{13} to $\Omega \cdot cm$.
- Thermal treatment:
 - Three orders of magnitude Twoways (up/down) reversible post fabrication conductivity tuning.

Electrical properties – Long run

- Non linear conductivity I/V
- Resistivity decrease an order of magnitude for high E fields.
- Not very high permittivity.
- This composites do not present ageing at all.

Chamber test

HV Test

0.3 mm gap $C_2 H_2 F_4$

Ceramic Surface Quality

X-ray Photoelectron Spectroscopy (XPS) Secondary Yield Emission

E distribution vs Electrode permittivity

Gas – Electrode interface

There is no effect in the E field for SiO_2 thin films under 1 μ m

Proposed model

C ₂ H ₂ F ₄	Primary Ionization (eV)	C-F Bond Energy (eV)
1 st	13.6	4.5
2 nd	17.4	

- Quenching gas forms F⁻ species after e⁻ collisions.
 - By instance, $C_2H_2F_4+e^-=C_2H_2F_2^++2F^-$, $C_2H_2F_4+2e^-=C_2H_2F_2+2F^-$
- Surface of the RPC electrode material reacts with fluorine, so the gas anions density decrease
- Ceramic affinity to F⁻ is very low, therefore concentration increases to produce a cold plasma
- Plasma produces electric field screening → Zero field inside plasma and high field around it
- The presence of a thin layer (~nm) of SiO₂ has no effect at the field distribution but capture F⁻.

Bakelite F⁻ density

C. Lu

G. Aielli

G. Aielli et al., NPB-PS, 158 (2006) 1

C. Lu, NIMA, 602 (2009) 3

1.19x10¹⁹

1.3x10¹⁹

1.67x10¹⁹

1.2x10²¹

HF SiO₂ etching

• $SiO_2 + 6HF = 2H^+ + SiF^{-2}_6 + 2H_2O$ (Verhaverbeke, JoTECS, 141 (1994) 10)

The Free Energy Change of Reaction of Si or SiO₂ and F₂ or HF (Ref. Reaction of Cl₂ or HCl)

The Free Energy Change of Reaction	ΔF (eV/mol)	ΔF (kJ/mol)	Formula
Si (s)+2 F2 (g) = SiF ₄ (g)	-16.2	(-157.65)	(1)
Si (s)+ 4 HF (g) = SiF ₄ (g)+2 H ₂ (g)	-4.94	(-479.85)	(2)
$SiO_2(s)+2F2(g) = SiF_4(g) + O_2(g)$	-7.38	(-716.05)	(3)
$SiO_2(s)+4$ HF (g) = $SiF_4(g)+2$ H ₂ O (g)	-0.83	(-80.35)	(4)
Si (s)+2 $\operatorname{Cl}_2(g) = \operatorname{SiCl}_4(g)$	-6.35	(-616.98)	(5)
Si (s)+4 HCl (g) = SiCl ₄ (g)+2 H ₂ (g)	-2.43	(-235.78)	(6)
$SiO_2(s)+2 Cl_2(g) = SiCl_4(g) + O_2(g)$	+2.47	(+239.42)	(7)
$SiO_2(s)+4$ HCl (g) = $SiCl_4(g)+2$ H ₂ O (g)	+1.69	(+163.68)	(8)

Note: Standard Gibbs free energy [ΔG^0 (eV/mol)] at 298.15 K. HF (g): -2.81; SiF₄ (g): -16.2; SiO₂: -8.82; HCl (g): -0.98; SiCl₄ (g): -6.35; H₂O (g): -2.35.

"Etching of various SiO2", Tatsuhiro Yabune, 2005

Ionized particles density effect

Conclusions

- Electrode materials fulfilling all the known requirements could be useless if they have low chemical affinity with the gas ionized particles.
- Glass, bakelite and linseed oil have high affinity to the F⁻ anions.
- F⁻ plasma physics has been used to understand gas discharge instabilities.
- Epitaxial surface treatment allows to make "gascompatible" materials with optimal electric properties.
- In high rate electrodes, the total absence of aging should be avoided.
- ToDo: Check compatibility between other gases and surfaces.

Thank you.

Annex:

