Investigation of ceramic based Resistive Plate Chambers for high rate beam environments

HELMHOLTZ | ZENTRUM DRESDEN | ROSSENDORF

HZDR

Dr. Lothar Naumann | Institute of Radiation Physics | www.hzdr.de

Outline

1. The Beam Fragmentation T₀ Counter for CBM

2. Ceramics RPC for radiation harsh environment

3. High rate test of Ceramics RPC for the BFT₀C

- Important scopes of High Energy Heavy Ion experiments are the start-time and the reaction-plane determination.
- For CBM the use of RPC for the Beam Fragmentation T₀ Counter (BFT₀C) with low resistive radiation hard ceramics electrodes and small chessboard like single cells is under consideration.

Mitglied der Helmholtz-Gemeinschaft

Particle flux (UrQMD) 6 m behind the target on the BFT₀C

Mitglied der Helmholtz-Gemeinschaft

Hit probability (UrQMD) 6 m behind the target

Mitglied der Helmholtz-Gemeinschaft

Challenges of the BFT₀C region:

- High-rate capability up to ≥ 2x10⁵cm⁻²·s⁻¹
 - \rightarrow one floating electrode per cell
- Timing resolution: **6** ≤ **60** ps
- Efficiency: ≥ **98** %
- Double-hit suppression: $\leq 2 \% \rightarrow$ cell size 20x20 mm²
- Cross-talk suppression: ≤1-2%

→ RPC with low resistive ceramics electrodes and chessboard like single cell design are under consideration

Mitglied der Helmholtz-Gemeinschaft

Ceramics for RPC

Mitglied der Helmholtz-Gemeinschaft

Ceramics for RPC

Ceramics for RPC

RPC design: active area 20x20 mm²; 6 gaps 250 μm

Si₃N₄/SiC resistive electrodes mCRPC0 – $2x10^{10} \Omega$ cm mCRPC1 – $3x10^9 \Omega$ cm mCRPC2 – $5x10^8 \Omega$ cm mCRPC3 – $7x10^9 \Omega$ cm

1 RPC

3 cells

RPC gas mixture

Mitglied der Helmholtz-Gemeinschaft

RPC test facility @ ELBE (electrons)

Mitglied der Helmholtz-Gemeinschaft

RPC test - electrons

MC – geometry scintillators • $2x10^{10} \Omega$ cm: ε fast degrease with flux

• $5x10^8 \Omega$ cm: ϵ is not capable to get on the efficiency plateau: unstable work and lots of streamers starting from 87-88 kV/cm

• $10^9 \Omega$ cm: most suitable resistivity order for our aims

RPC test - electrons

- For all probes (0,1,3) the time resolution remains between 90 ps and 110 ps below the flux of 7x10⁴ cm⁻²s⁻¹
- For probes (1,3) no data exists above 7x10⁴ cm⁻²s⁻¹ due to DAQ problems at higher rates
- For probe (0) with 2x10¹⁰ Ωcm in correlation with the steep efficiency drop below 90 % beginning from 4x10⁴ cm⁻²s⁻¹ the time resolution is rising and amounts to 150 ps at 1.6x10⁵ cm⁻²s⁻¹

RPC test facility @ CERN (pions)

Beamline: T10 Pion rate: few kHz/cm² Gas: 90% Freon + 10% SF₆ Electronics: MAX376012 Trigger scint. size: 20x20 mm² Start system: G_{RF} = 50 ps

RPC test @ CERN (pions)

Summary

- A Beam Fragmentation T₀ Counter of 120x120 cm² in the innermost region of the CBM TOF wall with 2x2 cm² chess-board like single RPC cells is under consideration.
- Radiation hard low resistive Si₃N₄/SiC composite is a candidate for the floating electrodes of the RPC cells.
- A manufacturing process has been developed to produce ceramic electrodes with a bulk resistivity varying between 10^8 and $10^{10} \Omega$ cm.
- The outer electrodes are Cr-plated Al_2O_3 sheets with a central contact pin.
- The dark count rate has been reduced to 0.5 Hz/cm² by special material treatments .
- To define the bulk resistivity, four RPC cells of different bulk resistivity have been investigated. $10^9 \Omega$ cm is the most suitable resistivity order for our aims.
- RPC tests with relativistic electron and pion beam fluxes of up to 2x10⁵ cm⁻²s⁻¹ have been provided.
- The detection efficiency amounts to 98 % and is sufficient for CBM, while the time resolution amounts to 90 ps and needs still further improvement.

Outlook

- Precise scan of the bulk resistivity in order to determine the optimal value with an acceptable values margin
- Assembling of eight RPC with following bulk resistivity's in a mini-module: 1 ch. 1.4x10⁹; 2 ch. 3.8x10⁹; 2 ch. 4.2x10⁹; 1 ch. 6.6x10⁹; 1 ch. 8.2x10⁹ and 1 ch. 9.4x10⁹ Ω cm
- Estimation of the streamer excitation
- Implementation of PADI-FEE
- Radiation hardness test of powered RPC cells with fast neutrons
- Start of the Si₃N₄/SiC ceramics composite production of 10 m² for all BFT0C-modules

Acknowledgment:

HZDR - Dresden/Germany: X. Fan, B. Kämpfer, R. Kotte, A. Laso Garcia, D. Stach

HIJ - Jena/Germany: J. Dreyer

ITEP - Moscow/Russia: A. Akindinov, D. Malkevich, A. Nedosekin, V. Plotnikov, R. Sultanov, K. Voloshin

HZDR

HELMHOLTZ | ZENTRUM DRESDEN | ROSSENDORF

Dr. Lothar Naumann | Institute of Radiation Physics | www.hzdr.de