Threshold-Dependence Study for Narrow-pitch-strip CMS RPCs

Kyong Sei Lee, KODEL, Korea University On Behalf of the CMS RPC Collaboration

- 1. Motivation
- 2. Test of the prototype RPCs at KODEL and GIF++/CERN
- 3. Conclusions

1. Motivation

The present detector R&D is for future CMS RPCs at high backgrounds

- In the current CMS muon system, Barrel + 4 endcap RPC stations (+ & -) composed of double-gap RPCs in η < 1.6
- ✓ In the PHASE I upgrade, 4^{th} RPC station in $|\eta| < 1.6$ has been completed in 2014.
- ✓ In the PHASE II upgrade by 2023, new endcap RPCs in 1.6 < $|\eta|$ <2.1(2.4) are currently proposed.

Direction of R & Ds for the high-η CMS RPCs (at RE3/1 and RE4/1)

We have pursued better detector performance ensuring higher rate capability for the future CMS RPCs:

- ✓ More sensitive detectors and electronics
 - \rightarrow Better for reducing the probability of aging due to high-rate background
 - \rightarrow To guarantee the better longevity of the RPC gaps
- ✓ Lower resistivity \rightarrow Rate capability ~ 1/ ρ

Resistive plates for CMS RPCs

- ✓ HPL (high pressurized laminate): $ρ ~ a few 10^{10} Ω cm$
 - \rightarrow Still, the best choice in virtue of the low unit price.

In the present R&D, two different type RPCs have been suggested and tested at GIF++/H4 and KODEL/KU.

Type A: two 1.6-mm-thick (instead of 2.0-mm thickness) double-gap RPCs

Effective HV = 7.8 ~ 8.4 kV (15% lower compare to that of the current CMS RPCs)

Type B: two 0.8-mm-thick four-gap (multi-gap) RPCs

Effective HV = 9.0 ~ 9.8 kV (~ same with that of the current CMS RPCs)

Advantage \rightarrow The detector current induced by high-rate particles is four times lower.

2016 RPCWorkshop, GENT

Prototype RPCs tested at GIF++ and KODEL

Have chosen the old RE1/1 RPC geometry (10°)

~ an half size of RE3/1 or RE4/1 (20°)

Strip lengths & pitches are close to RE3/1 (RE4/1).

- ✓ Narrow-pitch and short strips
- ✓ Strip pitches: 7.5 ~ 13.3 mm
- ✓ Strip length: 32.3 cm (1.6~1.7) / 24.5 cm (1.7~1.8) / 20.5 cm (1.8~1.9) / 21.4 cm (1.9~2.1)

Two different type front-end electronics

- 1. 32-ch FEBs currently used for the CMS RPC operation
- 2. New 32-ch FEBs manufactured with commercial preamplifiers (voltage sensitive)
 - ✓ Input impedance = 20 Ω
 - ✓ Gain = 200 mV/mV
 - ✓ Ethernet communication for adjusting thresholds
 - LVDS output pulse width = 70 ns (fixed)
 - ✓ Minimum sensitivity ~ 0.1 mV (~ 20 fC)
 - ✓ Time resolution ~ 200 ps

2016 RPCWorkshop, GENT

Thursday, February 25, 2016

2. Test of the prototype RPCs at KODEL and GIF++/CERN

200-mCi ¹³⁷Cs at KODEL/Korea University. Current activity = 5.55 GBq Maximum γ rate at 37 cm ~ 1.4 kHz cm⁻² GIF++ installed at H4 beam line Activity = 1.4 TBq (¹³⁷Cs)

Maximum γ rate at the test position ~ 1.5 kHz cm⁻²

Double-gap RPC (cosmic muons at KODEL)

Gas : 95.2% TFE + 4.5% iC_4H_{10} + 0.3% SF_6 + water vapor (0.3% in mass ratio)

Realized a strong strip-pitch dependence of the RPC data

Checked threshold dependences of efficiencies & mean cluster sizes The difference in HVs yielding 95-% efficiencies at Th = 0.6 mV and 1.0 mV (or ~ 180 fC) ~ 70 V. But, threshold dependences of C_s and N_s are much larger.

7

2016 RPCWorkshop, GENT

Realized that the threshold dependences of C_s and N_s are more severe for narrower strips. \rightarrow Needs proper terminations with the matched strip impedance in FEBs. Or, needs fine tuning of threshold values to adapt various strip pitches.

3^{rd} η region (mean strip pitch ~ 8.5 mm)

Multi-gap (4-gap) RPC (cosmic muons at KODEL) Gas : 95.2% TFE + 4.5% iC₄H₁₀ + 0.3% SF₆ + water vapor (0.3% in mass ratio)

Less strong threshold dependence of efficiencies & mean cluster sizes

Measured the muon data only with the new FEBs.

The difference in HVs yielding 95-% efficiencies measured at Th = 0.6 mV and 1.0 mV ~ 200 V.

- The usable size of the efficiency plateau is > 600 V even for the data measured at 0.6 mV.
- \rightarrow Better to lower the digitization threshold to lower the gain of signals.

Multi-gap RPCs are less sensitive both to threshold and strip pitch

 3^{rd} η region (mean strip pitch ~ 8.5 mm)

Usable range defined by $\varepsilon > 0.95 \& N_s(C_s > 6 < 10\%)$

Double-gap and Multi-gap (4-gap) RPCs tested with H4 beams at GIF++

Threshold dependence of efficiencies (muon beam only)

Reconstructed of strip-hit clusters and applied proper cuts:

3rd η region (mean strip pitch ~ 8.5 mm)

Time + Geometry + Beam area

Double-gap RPC: Difference in HVs yielding 95-% efficiencies at Th = 170 and 240 fC ~ 70 V. Multi-gap RPC: Difference in HVs yielding 95-% efficiencies at Th = 170 and 240 fC ~ 140 V.

Thresholds for CMS RPC FEE

Double-gap RPC

LV 220 mv ⇔ 170 fC LV 230 mv ⇔ 190 fC LV 240 mv ⇔ 240 fC

Multi-gap RPC

Charge spectra (using FADCs)

To understand the dynamic ranges of operation

- Set Gas = 95.1% TFE + 4.5% IC_4H_{10} + 0.4% SF_6
- Strip pitch = 12.0 mm (mid of 1st η section)
- Maximum time to measured = 320 ns
- ADC charges calibrated using a pulse generator

Double-RPC RPCs

- The streamer probability N_s was defined as $q_e > 20 \text{ pC}$ (in the TDC data, $C_s > 6$)
- Transition region between avalanche and streamer regions lying in 20 pC < q_e < 50 pC.</p>

Double-gap RPCs

- The exponential growth of the pickup charges becomes less stiffer near <q_> -1 pC.
 - \rightarrow Can expect that a wider usable range for the operation obtained with Th = 180 fC (or 1.0 mV).
- As lowering the threshold, the usable plateau range is getting narrower.
 - \rightarrow Found no advantage of choosing lower thresholds.

Charge spectra (using FADCs) for Multi-gap RPCs

The slope of the exponential growth is saturated even at very low <q_>.

This is the reason why the wide usable plateau range was obtained even with Th = 0.6 mV.

→ Better to adopt lower thresholds to enhance the detector sensitivity to maximize the rate capability and while to minimize aging due to high-rate beam background.

Influence of gamma rates measured at KODEL (5.55 GBq ¹³⁷ Cs)

- Tagged cosmic muons with/without presence of gamma background
- ✓ Installed each testing RPC at 37 cm from source → Gamma flux = 0.32 MHz cm⁻²
 Irradiation area ~ 1000 cm⁻² → max. y rates in 2-gap or 4-gap RPCs ~ 1.4 kHz cm⁻²

Double-gap RPC

Shift @ $\epsilon=0.95$ in HV due to the γ background ~ 70 V (yielding ~ 1 kHz cm⁻² at the mid of the plateau) \rightarrow Rate capability >> 1 kHz cm⁻²

Multi-gap RPC

Shift @ ε=0.95 in HV due to γ ~ 200 V (larger than the 2-gap RPC case)
But, confirmed the rate capability ~ 5 kHz cm⁻²

γ rates and currents (KODEL)

Double-gap RPC

- ✓ Detector efficiency for 662-keV γ ~ 60% of Q.E. (by GEANT) at HV_{ε=0.95} + 150 V.
- ✓ <Q $_{e,\gamma}$ > ~ 25 pC at HV $_{\epsilon=0.95}$ + 150 V.

Multi-gap RPC

- ✓ Detector efficiency for 662-keV γ ~ 40% of Q. E. (by GEANT) at HV_{ε=0.95} + 200 V.
 ✓ <Q_{e,γ}> ~ 6.5 pC at HV_{ε=0.95} + 200 V.
- \rightarrow ~ 4 times smaller than the 2-gap RPC case

2016 RPCWorkshop, GENT

Thursday, February 25, 2016

Rate dependence of efficiencies measured at GIF++ (1.4 TBq ¹³⁷ Cs)

Shift @ ϵ =0.95 in HV due to γ background ~ 70 V for the double-gap RPC Shift @ ϵ =0.95 in HV due to γ background ~ 100 V for the multi-gap RPC

Efficiencies (just subtracted for gamma background)

Double-gap RPCs: Long tails in C_s distributions (KODEL and GIF++)

Stronger capacitive coupling due to no strip termination and impedance mismatching.

- ✓ The trend is more severe when measured at the low threshold and with narrower-pitch strips
- \rightarrow Needs proper terminations with the matched strip impedance in FEBs.

Fixed input impedance at CMS-RPC FEBs = 15 Ω

Strong capacitive couplings among narrow-pitch strips (measured FADCs)

Muon pulses tagged at a region with strip pitch of - 11.0 mm

Muon signals of the same detector but with strip pitches of – 22.0 mm Capacitive couplings are less severe with wider-pitched strips.

2016 RPCWorkshop, GENT

Multi-gap RPC: Tails in cluster-size distributions (KODEL & GIF++)

- The tails are less severe for multi-gap RPCs
- The threshold and pitch dependences are also lower.

Th = 0.6 mV KODEL No source Th = 1.0 mV

Fixed input impedance at CMS-RPC FEBs = 15 Ω

G

2016 RPCWorkshop, GENT

3. Conclusions

Confirmed the detector performances for the two different type RPCs.

For 1.6-mm double-gap RPCs instead of 2.0-mm gaps

1. The operational **HV = 7.8 ~ 8.4 kV** with Th = 180 fC.

\rightarrow ~ 15% lower than the current CMS RPCs

- 2. The higher threshold was preferred to suppress the large C_s measured at narrower-pitch strips.
- → But, needs proper impedance-matched terminations, and (could be) optimization of geometrical factors (thicknesses of gaps and electrodes).
- Rate capability issues: shift ~ 50 V / (kHz cm⁻²) in HV.
- \rightarrow Confirmed the rate capability >> 1 kHz cm⁻².

For o.8-mm multi-gap(4-gap) RPCs

- 1. The operational **HV = 9.0 ~ 9.8 kV**
- 2. Lowering the threshold is more relevant compared to the 2-gap RPC case.
- 3. Rate capability issues:
- ✓ Shift ~ 150 V / (kHz cm⁻²) is larger than of the 2-gap RPC case because of the floating electrodes.
- ✓ But, rate capability ~ 5 kHz cm⁻² already confirmed in the previous R&D.
- ✓ Gamma induced current in the 4-gap RPC ~ factor 4 smaller than the double-gap RPC case.
 → Better for aging.

In the final conclusion, both types are good candidates !

Backups

2016 RPCWorkshop, GENT

Double-gap RPC

Gamma flux = 0.32 MHz cm⁻² at 37 cm from the ¹³⁷Cs source measured at KODEL

1.	6-mm double-gap	o RPC	0.8-mm multi-gap RPC				
Threshold	γ rates (Hz cm ⁻²) (mid of plateau)	Current (µA) (Irradiated area =1000 cm²)	Threshold	γ rates (Hz cm ⁻²) (mid of plateau)	Current (µA) (Irradiated area =1000 cm²)		
0.60 mV	1398.8	33.01	0.60 mV	1462.1	8.06		
0.75 mV	1319.0	35.02	0.75 mV	1334.9	9.15		
1.00 mV	1277.0	39.11	1.00 mV	1299.0	9.42		

Measured at 0.6 mV (double-gap RPC)

HV _{eff}	8	< C _s >	C _s =1,2,3	C _s =4,5,6	$C_{s} > 6$
7.67 kV	0.976	3.45	0.796	0.102	0.082
7.77 kV	0.980	3.86	0.771	0.139	0.090
7.87 kV	0.988	6.79	0.494	0.243	0.289
7.97 kV	0.988	8.40	0.324	0.300	0.377

Measured at 180 fC (Double-gap RPC)

HV _{eff}	8	<c<sub>5></c<sub>	C _s =1,2,3	C _s =4,5,6	$C_s > 6$
7.92 kV	0.966	3.09	0.810	0.155	0.035
8.02 kV	0.985	3.68	0.790	0.190	0.030
8.13 kV	0.985	3.89	0.654	0.276	0.047
8.21 kV	0.996	4.58	0.580	0.369	0.055

The suppression of C_s due to the gamma background is stronger for the double-gap RPC.

Double-gap RPC

Multi-gap RPC

Shift @ ε=0.95 in HV due to raising the threshold from 0.6 to 1.0 mV ~ 70 V. Shift @ ε=0.95 in HV due to raising the threshold from 0.6 to 1.0 mV ~ 150 V.

Threshold dependence with presence of gamma background

The suppression of C_s due to the gamma background is stronger for the double-gap RPC.

Cluster sizes

Four-gap RPC

2016 RPCWorkshop, GENT

Tagged muon hits in 16 μs windows (from - 6 μs to + 10 μs centered at the muon peak) (strip area affected by gamma hits ~ 500 cm²)

Bulk resistivity of the HPL

Can be measured by applying gamma-ray signals with rates close to the detection capability limit $(up to \sim 5 \text{ kHz cm}^{-2})$

 \rightarrow HV formed inside the gaps ~ insensitive to the increase of the applied HV

ightarrow
ho = (2.67 ± 0.20) × 10¹⁰ Ω cm

Temperature coefficient $\alpha = 0.13 \ ^{\circ}C^{-1}$

Irradiation area $A \sim 500 \text{ cm}^2$, $d = 6 \times 0.2 \text{ cm}$

$$\rho_b^{20} = \rho_T e^{\alpha(T-T_0)}$$

T = 24.97 C	P = 9	97.7 hPa	H = 73%					
$\Delta V = \rho * d/A \Delta I$								
R	A/d	ρ(24.79)	ρ(20)					

ĸ	A/d	p(24.79)	ρ(20)
Ω	cm	Ω cm	Ω cm
3.433 E+07	416.67	1.4304 E+10	2.666 E+10

Threshold dependence of cluster sizes (muon beam only)

Both double-gap and multi-gap RPCs: shift < 100 V.

LV 220 mv ⇔ 170 fC LV 230 mv ⇔ 190 fC LV 240 mv ⇔ 240 fC

Double-gap RPC

Multi-gap RPC

	HPL-resistivit y value										24.6/ 45%/ 1009.3
	Current				Current				Current		
N.O	average	value	DATA LINK	N.O	average	value	DATA LINK	N.O	average	value	DATA LINK
1	7.84E-06	2.56E+10	<u>01_graph</u>	11	8.10E-06	2.48E+10	<u>11_graph</u>	21	7.50E-06	2.68E+10	<u>21_graph</u>
2	5.09E-06	3.95E+10	<u>02_graph</u>	12	8.29E-06	2.43E+10	<u>12_graph</u>	22	8.22E-06	2.45E+10	<u>22_graph</u>
3	8.07E-06	2.49E+10	<u>03_graph</u>	13	7.96E-06	2.53E+10	<u>13_graph</u>	23	8.41E-06	2.39E+10	<u>23_graph</u>
4	8.47E-06	2.37E+10	<u>04_graph</u>	14	8.14E-06	2.47E+10	<u>14_graph</u>	24	8.33E-06	2.41E+10	<u>24_graph</u>
5	8.43E-06	2.38E+10	<u>05_graph</u>	15	7.93E-06	2.53E+10	<u>15_graph</u>	25	8.03E-06	2.50E+10	<u>25_graph</u>
6	8.00E-06	2.51E+10	<u>06_graph</u>	16	8.32E-06	2.42E+10	<u>16_graph</u>	26	8.56E-06	2.35E+10	<u>26_graph</u>
7	7.59E-06	2.65E+10	<u>07_graph</u>	17	8.05E-06	2.50E+10	<u>17_graph</u>	27	8.30E-06	2.42E+10	<u>27_graph</u>
8	8.09E-06	2.48E+10	<u>08_graph</u>	18	8.22E-06	2.45E+10	<u>18_graph</u>	28	8.38E-06	2.40E+10	<u>28_graph</u>
9	8.40E-06	2.39E+10	<u>09_graph</u>	19	8.07E-06	2.49E+10	<u>19_graph</u>	29	7.48E-06	2.69E+10	<u>29_graph</u>
10	8.04E-06	2.50E+10	<u>10_graph</u>	20	7.90E-06	2.55E+10	<u>20_graph</u>				

