

Time and position resolution of high granularity, high counting rate MRPC for the inner zone of the CBM-TOF wall

M. Petris, D. Bartos, G. Caragheorgheopol, M. Petrovici, L. Radulescu, V. Simion IFIN-HH Bucharest

> J. Frühauf, P-A. Loizeau, M. Kis GSI Darmstadt

I. Deppner, N. Herrmann, C. Simon Heidelberg University

Outline

- Motivation CBM-TOF inner wall
- ➢ High counting rate, high granularity MGMSRPC − short review
- MGMSRPC performance in heavy ion beam-tests
 - Efficiency
 - Cluster size
 - Time resolution
- ➤ New prototypes for CBM-TOF inner wall at SIS100
- CBM-TOF inner wall design
- Conclusions and Outlook

CBM – TOF wall

- > Active area: 120 m²
- > Full system time resolution : $\sigma_{\rm T} \sim 80$ ps
- Efficiency: > 95 %
- **Rate capability:** > 30 kHz/cm²
- Occupancy : < 5 %</p>
- Free streaming data acquisition

CBM – TOF Technical Design Report, October 2014, GSI Darmstadt

Incident particle flux on CBM-TOF wall

Hit density on CBM-TOF wall

Performance of high granularity MGMSRPC prototype

Mariana Petris, 13th Workshop on Resistive Plate Chambers and Related Detectors, 22-27 February, 2016, Ghent, Belgium

5

x[mm]

Basic architecture for MGMSRPC implementation in the inner zone of the CBM-TOF wall

- 7.4 mm strip pitch = 5.6 mm width + 1.8 mm gap
- Differential readout, 50Ω impedance
- Low resistivity Chinese glass (~10¹⁰ Ωcm)

Focused proton beam, 2.5 GeV/c @ COSY, Jülich

6

Real size MGMSRPC prototype for the inner zone of the CBM-TOF wall

- ✓ Symmetric two stack structure: 2 x 5 gas gaps
- ✓ Resistive electrodes: **low resistivity glass**
- ✓ Gap size: 140 µm thickness
- \checkmark Active area 200 x 266 mm²
- ✓ Pitch=2.2mm (w) +2.0 mm (g) = 4.2 mm
- \checkmark Differential readout, **100 Ω impedance**

7

Cosmic rays test in HPD Detector Laboratory

Position along the strip as a function of strip number

Correlation between position along the strips and position in the plastic scintillator

200

150

100

150

Position on PI.2

Multihit in-beam test with uniform exposure

GSI Darmstadt, October 2014

Bucharest MGMSRPCs in the Experimental Setup

- **RPCRef = 2.54 mm strip pitch**
- 85%C₂H₂F₄+10%SF₆+5%iso-C₄H₁₀
- Average counting rate = 1 kHz/cm²
 - RPC2013 FEE = PADI8 RPCRef - FEE = PADI3

Goals: - counter performance in multi-hit environment - compatibility with the PADI8 FEE developed within CBM-TOF collaboration

Off-set Calibrations and Clusterization

RPC2013 Time – hit multiplicity

Raw time spectrum

Walk, Velocity spread & Position dependence corrections

Position corrections along the strips

Mariana Petris, 13th Workshop on Resistive Plate Chambers and Related Detectors, 22-27 February, 2016, Ghent, Belgium

Walk, Velocity spread & Position dependence corrections

Mariana Petris, 13th Workshop on Resistive Plate Chambers and Related Detectors, 22-27 February, 2016, Ghent, Belgium

Selection of good reference hits

2.8 cm across the strips

2 cm along the strips

Time resolution with good reference hits

Time resolution with good reference hits

Cluster size @ HV= ± 5.6 kV, Th=245 mV

Hit multiplicity

Efficiency, Cluster Size & Time Resolution

Mariana Petris, 13th Workshop on Resistive Plate Chambers and Related Detectors, 22-27 February, 2016, Ghent, Belgium

CERN – SPS beam-time February 2015

Joint in-beam test of the CBM-TOF Collaboration

- Ar beam of 13A GeV on a Pb target
 - $85\%C_2H_2F_4+10\%SF_6+5\%$ is $o-C_4H_{10}$
- FEE PADI8 cards both RPC2013 & RPCRef
- PADI8 threshold = 200 mV
- Convertors FPGA TDC

Positioned at 4 degree relative to the beam line

20

Goals: - to approach the experimental conditions to the future real ones in CBM

Detector under test (DUT) =RPC2013, Ref=RPCRef

System time resolution as a function of cluster size in RPC2013

Hit multiplicity in Bucharest RPCs

Hit multiplicity correlation in Bucharest RPCs

Counting rate estimation from plastic scintillators

Individual contributions of the two RPCs is not necessarily the same.

CERN – SPS beam-time February 2015

- ➢ 60 ps time resolution
- > 1.5 strips mean cluster size
- **50** Ohm transmission line impedance

> MGMSRP architecture of ~1.5 strips cluster size could reduce the costs of the electronic readout channels

MGMSRPC prototype with a transmission line impedance tuned through the readout strip width

Readout electrode: 7.2 mm pitch= 1.3 mm width + 5.9 mm gap High Voltage electrode: 7.2 mm pitch= 5.6 mm width + 1.6 mm gap

- ✓ Symmetric two stack structure: 2 x 5 gaps
- ✓ Active area 96 x 300 mm²
- Gas gap thickness: 140 μm thickness
- Readout electrode = 40 strips
- ✓ Differential readout = 100 Ohm impedance
- ✓ Resistive electrodes: low resistivity glass

Single stack MGMSRPC prototype with 100 Ohm transmission line impedance

Readout electrode & HV electrode : 10.1 mm pitch= 8.6 mm width + 1.5 mm gap

- ✓ Single stack structure: 8 gaps
- ✓ Active area 96 x 300 mm²
- ✓ Gas gap thickness: 140 µm thickness
- ✓ Readout electrode = 28 strips
- ✓ Differential readout = 100 Ohm impedance
- ✓ Resistive electrodes: low resistivity glass

⁶⁰Co and cosmic rays laboratory tests of the new prototypes

single stack MRPC

Tested at CERN SPS with a Pb beam (30A GeV) in November 2015: data analysis in progress

CBM-ToF wall

Inner wall

29

CBM – TOF Technical Design Report, October 2014, GSI Darmstadt

CBM – TOF Small Polar Angle Architecture based on Bucharest MGMSRPC

- the design of the inner zone is based on MGMSRPCs
- **main requirements:**
 - uniform active area coverage
 - lowest possible overlap between

counters and modules, respectively

- minimization of the readout channels
- merging with the design of the outer wall

CBM – TOF Technical Design Report, October 2014, GSI Darmstadt

CBM – TOF Small Polar Angle Module Architectures

CBM – TOF Technical Design Report, October 2014, GSI Darmstadt

CBM – TOF inner zone in numbers

Module notation (number of modules)	Module size (mm)	Number of MRPC per module	Total number of MRPC	Number of strips per module	Total number of strips
M1(2)	1270x1417x239	32	64	2048	4096
M2(2)	2140x705x239	27	54	1728	3456
M3(4)	1850x1417x239	42	168	2688	10752

Total number of readout channels = 18304 x 2 = 36608

CBM – TOF Technical Design Report, October 2014, GSI Darmstadt

Outlook of the next activities

- Finalization of data analysis for the last two developed prototypes
- Basic solution for the inner zone of the CBM-TOF wall is under control

CBM-TOF inner zone

- ~15 m² active area
- ~300 MGMSRPC counters
- ~ 40 000 readout channels

HPD main infrastructure:
<10 000 part/ft³ clean room for construction

- dedicated RPC test laboratory

• We have the expertise and infrastructure needed to involve in the construction of the MGMSRPCs for CBM-TOF inner zone

Conclusions

The performance of the MGMSRPCs in conditions approaching those of the CBM experiment satisfies the CBM-TOF wall requirements:

- ≻ Efficiency over 98%.
- > System time resolution of \sim 70 ps 80 ps .
- The detector performance is very good in high multiplicity and counting rate environment.
- ➤ Basic solution for the inner zone of the CBM-TOF wall is under control
- New prototypes were developed in order to satisfy both requirements concerning impedance matching and reduced number of readout channels.
- We have the expertise and infrastructure needed to start the construction of MGMSRPCs for the inner zone of CBM-TOF wall.

Thank you for your attention!