Performance Study of Mosaic High Rate MRPC

Bo XIE

Tsinghua University

Outline

- Motivation
- Mosaic design 1 : glue glass
 - structure
 - simulation
 - cosmic ray test results
 - beam test results
- Mosaic design 2 : block by fishing line
 - beam test results HV scan, position scan, rate scan etc.
- Summary

Motivation

Requirement: ■ Rate >2kHz/cm² In CMS muon system, the present design of the endcap RPCs, made of a double Bakelite gas gap and operating in avalanche mode, is not expected to be suitable for the particle rates amounting to several tens of kHz/cm² in the scenario of an LHC luminosity going up to 10³⁴⁻³⁵ cm-2s⁻¹

Tytgat M, Marinov A, Zaganidis N, et al. Construction and performance of large-area triple-GEM prototypes for future upgrades of the CMS forward muon system[C]//Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2011 IEEE. IEEE, 2011: 1019-1025.

Motivation

Test results at Nuclotron, Dubna

In CMS muon system, the present design of the endcap RPCs, made of a double Bakelite gas gap and operating in avalanche mode, is not expected to be suitable for the particle rates amounting to several tens of kHz/cm² in the scenario of an LHC luminosity going up to 10³⁴⁻³⁵ cm-2</sup>s⁻¹

High rate MRPC based on low resistive glass is best candidate for the upgrade of endcap muon system.

- High rate capability >70kHz/cm²
- Time resolution<100ps, eliminate most of background
- <u>Limitation: glass size 33 cm \times 28 cm</u>
- Solution: glass mosaic

Mosaic design 1 : glue

XIII Workshop on Resistive Plate Chambers and related detectors Ghent University, Belgium

February 22-26, 2016

Weighting field simulation

XIII Workshop on **Resistive Plate Chambers and related detectors** Ghent University, Belgium February 22-26, 2016

10 (mm)

1

0.25

Gap

Simulation results

- Gluing region which is from 270 to 271 mm.
- On average, weighting field drops from 5.32 to 4.12 V/cm
- Affected area is 2.2 mm,

0.5% of the detector.

- @ E = 11 kV/mm (±6.8 kV), α =140/mm β=10/mm
 - lowest efficiency: ~93%,

2% efficiency loss

Cosmic ray test results

Beam test results

Ghent University, Belgium February 22-26, 2016

9

GENT

Beam test results

XIII Workshop on Resistive Plate Chambers and related detectors Ghent University, Belgium

February 22-26, 2016

Mosaic design 2

XIII Workshop on Resistive Plate Chambers and related detectors Ghent University, Belgium February 22-26, 2016

11

Mosaic design 2

XIII Workshop on Resistive Plate Chambers and related detectors Ghent University, Belgium February 22-26, 2016

12

Beam test results

Beam test @ ELBE, HZDR, Sep, 2015

S24, S25 : $4 \times 4 \text{ cm}^2$ S11 : $5 \times 5 \text{ mm}^2$ S1, S2, S3, S4 : $2 \times 2 \text{ cm}^2$

Gas supply: 90% Freon, 5% iso-butane, 5% SF6, 50ml/min

Beam test results

Time resolution

Time resolution @ $HV = \pm 6 kV$

- Walk correction
- Deviation of time can be corrected from 7.00 to 2.76.
- Resolution of the start time (RF) is
 35 ps.
- Every channel is
 25 ps.

HV scan

XIII Workshop on Resistive Plate Chambers and related detectors Ghent University, Belgium February 22-26, 2016

16

Position scan

Efficiency loss in the gap area: ~ 2%

XIII Workshop on Resistive Plate Chambers and related detectors Ghent University, Belgium

hent University, Belgius February 22-26, 2016

Rate scan

GENI

Ghent University, Belgium February 22-26, 2016

Summary

- <u>Two kinds of large area mosaic MRPC were developed.</u> Simulation proves that the influence of 1mm glue is only 0.5% of the detector and the lowest efficiency point in the detector can still reach 93%.
- Cosmic and <u>Beam test of gluing MRPC shows that it has</u> <u>efficiency higher than</u> 94% and <u>97%</u>, time resolution around 73 ps. <u>But the noise is too big</u>.
- <u>Mosaic MRPC uses fishing line to separate two glasses and</u> <u>achieve efficiency higher than 96%, time resolution around 60 ps</u> <u>in beam test.</u>
- Fishing line block is a good way to develop large area high rate MRPC with small pieces of low resistive glasses.

Next to do

Big trapezoidal high rate MRPC will be developed, and test at GIF++.

XIII Workshop on Resistive Plate Chambers and related detectors Ghent University, Belgium February 22-26, 2016

20

Thank you for your attention

