

Gas effect of MRPC in high luminosity experiment

Lyu Pengfei Department of Engineering Physics, Tsinghua University, Beijing, China Feb 22~26, 2016 RPC 2016, Ghent University, Belgium

- Background Introduction
- Gas Pollution
- Simulation Based on SIMPLE Algorithm
- X-ray Experiments
- Design and Production of Self-Sealed MRPC
- The Next Working Steps
- Summary

Background: MRPC and CBM TOF

Multi-gap resistive plate chamber (MRPC) will construct the **time-of-flight system**(TOF) in the Compressed Baryonic Matter experiment(CBM) in FAIR, identifying secondary colliding particles.

CBM-TOF will work at very high rate, MRPC might meet problems for **long time** running under such **high luminosity** condition.

For high luminosity environment, the working gas is **consumed more rapidly**. The **interchange of gas** cannot be ignored any more.

Gas Pollution

Working gas $(C_2H_2F_4, \text{ iso-}C_4H_{10}, SF_6)$ is exhausted more rapidly under high flux rate, and loses ability of **absorbing electron** and **suppressing streamer**. This effect was once observed on RHIC-STAR MTD.

A series of simulations are first conducted on the gas flow condition (flow velocity, gas concentration, etc.) in the MRPC counter, including a **two-dimensional simulation** based on **SIMPLE algorithm**.

Simulation: Establishing Model

To simplify the situation, a **two-dimension model** is established.

Parameter in consideration: gas volume, flow rate, pollution concentration

Parameter ignored: 3-D structure of MRPC

Calculating field: the horizontal transect of the gas box with MRPC inside at the level of a gas gap.

Grid size: 1cm x 1cm; MRPC area: 50 x 50 grid Inlet & Outlet: 10 grid

Simulation: Governing Equation

According to the situation, the **governing equation** includes 3 parts.

Continuity equation:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

Density of gas ρ is constant, so it won't appear in this equation.

Momentum equation:

$$\rho \frac{\partial u}{\partial t} + \rho \left(u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} \right) = -\frac{\partial p}{\partial x} + \mu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)$$
$$\rho \frac{\partial v}{\partial t} + \rho \left(u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} \right) = -\frac{\partial p}{\partial y} + \mu \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right)$$

Assume gas viscosity is constant and the gas cannot be compressed.

Component equation:

$$\rho \frac{\partial c}{\partial t} + \rho \left(u \frac{\partial c}{\partial x} + v \frac{\partial c}{\partial y} \right) = \Gamma_l \left(\frac{\partial^2 c}{\partial x^2} + \frac{\partial^2 c}{\partial y^2} \right) + R_l$$

Two kinds of gas, this component equation is essential.

c - massive percentage of polluted; Γ_l - diffusion coefficient of polluted gas; R_l - generating rate per unit volume

Take $C_2H_2F_4$'s density:

Take $C_2H_2F_4$'s viscosity:

Some parameters has to be determined to solve governing equations.

Gas dynamic viscosity μ :

Gas inlet velocity **UIN**:

With gas flow rate 60mL/min and inlet diameter 1cm:

$$\text{UIN} = \frac{60}{60 \times \pi \times 0.5^2} \times \frac{1}{100} = 0.0127 \,\text{m/s}$$

Polluted gas generating rate R_l :

Gas molecules
polluting rate
$$R_p = 25 \times 10^7 \times \frac{10^7}{30} \times 10^6 \approx 8.333 \times 10^{19}$$

$$R_t = \frac{1210 \times 1 \times 1 \times 0.001}{102} \times 6.02 \times 10^{23} \approx 7.141 \times 10^{21}$$

Flux rate of incident particles: 25 kHz/cm² Assume average deposited energy of incident particles is 10MeV Average ionization energy of gas is 30eV Avalanche amplification factor is 10⁶

 $\rho = 1.21 \, \text{kg/m}^3$

 $\mu = 0.022$ mPa · s

Total number of gas molecules per square meter

$$R_l = \frac{R_p}{R_t} \cdot \rho = \frac{8.333 \times 10^{19}}{7.141 \times 10^{21}} \times 1.21 \approx 0.01412 \text{kg/(s \cdot m^3)}$$

Simulation: Standard Situation

Take a possible experimental condition as **standard situation**:

Gas box volume: 1m x 1m; Gas flow: 60mL/min

Simulation: Flow Volume

Decrease the gas box volume (like blocking extra space in STAR) in simulation: Box Volume: 60cm x 60cm. Gas Flow: 60ml/min.

same with standard condition.

compared to standard situation.

Simulation: Flow Volume

Lyu Pengfei

Simulation: Flow Volume

Test different volume in simulation: **Box Volume: 60cm; 70cm; 80cm; 90cm, 100cm; 120cm; 200cm**. Gas Flow: 60ml/min.

Max concentration keeps growing with volume increasing until it's large enough (120cm x 120cm). Below 100cm x 100cm volume, the relationship between max concentration and volume is **linear**.

Simulation: Gas Flow

Modify different gas flow speed in simulation: Gas Flow: 10ml/min; 20ml/min; 40ml/min; 60ml/min. Box Volume: 1m x 1m.

Simulation: Gas Flow

Modify different gas flow speed in simulation : Gas Flow: 10ml/min; 20ml/min; 40ml/min; 60ml/min. Box Volume: 1m x 1m.

Concentration Distribution Concentration Concentration 1.0 24 59 23.54 0.8 0.8 21.08 20.18 17.56 16.81 0.6 0.6 € £ € £ 14.05 13.45 0.4 0.4 10.54 10.09 7.025 .725 0.2 -0.2 3.513 0.0 0.0 -0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 X (m) X (m) 10ml/min 20ml/min Concentration Concentration 1.0 1.0 19.60 0.8 0.8 16.80 15.00 14 00 12.50 0.6 0.6 (m) ≺ (ш) Х 11.20 10.00 0.4 0.4 8.400 7 500 5.600 5.000 0.2 -0.2 2.800 0.0 -0.0 -0.0 0.8 0.2 0.8 0.2 04 0.6 10 0.0 0.4 0.6 1.0 X (m) 40ml/min 60ml/min

Max Concentration under Different Gas Flow

Max concentration **drops linearly** with gas velocity increasing.

Design a **8-gap** MRPC with **double chamber**. Parameters are as follows:

<u>19</u> , 540		MRPC Part	Design Size/mm
	Design large counter	Bottom PCB	580×610
	size for more obvious	Middle PCB	542×554
	ragult under gas	Outer glass	505×529
	lesuit under gas	Inner glass	495×519
	pollution situation.	Mylar	509×533
Gas Box		Honeycomb board	500×510
Interface Counting Rate	el CAEN erter N1145	Gas gap width	0.25
		Gas gap number	8
		Strip width	7
		Strip length	50
	arrent from	Strip gap	3
X-Ray - HV + HV High	gh Voltage	Strip number	48
Vohage	Agilent Computer	Detection area	480×500
Source		Gas box size	$1000 \times 1000 \times 60$

A high intensity **X-ray source** to simulate high particle flux condition, **dark current recovery time** involved for measuring gas pollution. Freon(90%) + iso-C4H10(5%) + SF6 (5%).

Design a **8-gap** MRPC with **double chamber**. Parameters are as follows:

<u>8</u> , 540		MRPC Part	Design Size/mm
	Design large counter	Bottom PCB	580×610
	size for more obvious	Middle PCB	542×554
	rosult under gas	Outer glass	505×529
	result under gas	Inner glass	495×519
	pollution situation.	Mylar	509×533
Вох		Honeycomb board	500×510
riace Counting Rate	el CAEN ater N1145	Gas gap width	0.25
		Gas gap number	8
		Strip width	7
		Strip length	50
	irrent from	Strip gap	3
X-Ray - HV + HV High	Source	Strip number	48
Voltage	Agilent Computer	Detection area	480×500
Source		Gas box size	$1000 \times 1000 \times 60$

A high intensity **X-ray source** to simulate high particle flux condition, **dark current recovery time** involved for measuring gas pollution. Freon(90%) + iso-C4H10(5%) + SF6 (5%).

Block extra space in the gas box; Change other parameters of X-ray & gas.

Experimental Results: Cosmic-Ray Test & X-Ray Test

Lyu Pengfei THE XIII WORKSHOP ON RESISTIVE PLATE CHAMBERS AND RELATED DETECTORS, GHENT UNIVERSITY, BELGIUM, FEB 22-26, 2016

Influence of X-ray's during time and energy to the MRPC counter.

MRPC HV: 5500V Gas flow: 54-3-3(ml/min) X-ray energy: 60kV X-ray during time: 1min/2min/5min

t_r - Recovery time

estimate how fast counter can recover from gas pollution.

Irradiation	t _r / s	
Time		
1min	91	
2min	96	
5min	89	

Short time: Not obvious

MRPC HV: 5500V Gas flow: 54-3-3(ml/min) X-ray energy: 60kV~160kV X-ray during time: 2min

Experimental Results: Block Test

We **block** the extra space in the gas box (reducing the volume as in the simulation), and check if the gas **interchanges faster**.

Normal setting:	
Volume of gas box:	64.5L
Volume of chamber:	25.6L
Volume of gas:	39L

Block setting:

Volume of block:	21.3L
Volume of gas:	18L

Experimental Results: Block Test

MRPC HV: 5500V; Gas flow: 54-3-3(ml/min); X-ray energy: 60kV; X-ray during time: 2min; Leadshield:1mm; Distance:3m.

Experimental Results: Block Test

 t_r as a function of X-ray's energy - block setting MRPC always recovers faster than normal one, both in the original gas mixture and non SF₆.

MRPC HV: 5500V; Gas flow: 54-3-3 (ml/min);MRPC HV:X-ray energy: 60kV; X-ray during time: 2minX-ray energyLeadshield:1mm; Distance:3m.Leadshield:1

MRPC HV: 5500V; **Gas flow: 57-3 (ml/min);** X-ray energy: 60kV; X-ray during time: 2min Leadshield:1mm; Distance:3m.

Gas flow: 54-3-3/36-2-2/18-1-1/9-0.5-0.5 (ml/min); X-ray energy: 110kV; X-ray during time: 2min; Leadshield:1mm; Distance:3m.

Self-Sealed MRPC: Introduction

- Gas pollution is related to the module size.
- Reduce the volume.
- Eliminate the Aluminum box and make MRPC selfseaed.

Honeycomb board; 2 Bottom PCB;
 Middle PCB; 4 Inner glass; 5 Outer glass;
 Mylar; 7 Nylon fishing line;
 Nylon column; 9 PMMA strip.

Self-sealed MRPC's side is **sealed by PMMA**, enables it **work independently**.

Prototype: Except the PMMA strip, other parameters are the same.

Before test, 3~5 times MRPC module's volume working gas needs charging to exhaust air.

Normal MRPC: Volume for gas: 64.5L

For 60ml/min gas flow, 53h.

Self-sealed MRPC: Volume for gas: 2.5L

For 60ml/min gas flow, 2h.

MRPC HV: 5500V; Gas flow: 54-3-3(ml/min); X-ray energy: 60kV; X-ray during time: 1min; Leadshield:1mm; Distance:3m.

Dark current and counting rate as a function of energy of X-ray for self-sealed MRPC.	t _r as a function of X-ray's energy - sealed MRPC always recovers faster than normal one.
MRPC HV: 5500V; Gas flow: 54-3-3 (ml/min); X-ray energy: 60~160kV; X-ray during time: 2min; Leadshield:1mm; Distance:3m.	MRPC HV: 5500V; Gas flow: 57-3-3 (ml/min); X-ray energy: 60~160kV; X-ray during time: 2min; Leadshield:1mm; Distance:3m.
$(1) \\ (1) $	$ \begin{array}{c} $
Energy (kV)	Energy (kV)

Next Working Steps

Further study on **gas pollution** and **self-sealed MRPC** from two aspects – **experiment and simulation**, should be carried on.

Present simulation is a much too simplified estimation.

More realistic parameter determination; More concerns about geometrical details; More conditions to simulate; A 3-D simulation;

A MRPC prototype was operated in the CERN 2015 Nov beam time, the performance (dark current, efficiency, time resolution, etc.) is under analysis.

Newly-designed self-sealed MRPC will be manufactured.

Summary

- With increase of accelerator luminosity, gas is consumed more rapidly and becomes a problem for MRPC.
- Simulation based on SIMPLE algorithm shows gas pollution grows severe with the increase of the gas box's volume or the decrease of gas flow rate.
- X-ray experiment confirms this rule very well.
- Self-sealed structure can improve the gas exchange speed in the MRPC chamber and has better performance against gas pollution.
- Further study on gas pollution can help us to reduce this effect in the design of CBM-TOF system.

Thank You!

- Lyu Pengfei
- Department of Engineering Physics,
- Tsinghua University, Beijing, China
- Feb 22~26, 2016
- 13th RPC Workshop