Gas mixture studies for streamer operated RPCs

A. Paoloni (INFN-LNF)

XIII Workshop on Resistive Plate Chambers and Related Detectors (RPC 2016)

Ghent, February 22-26 2016

Why streamer ?

Streamer operated RPCs can be used:

- in low rate experiments (in underground laboratories or at cosmic ray fluxes)
- if time resolutions worse than 1 ns are acceptable,

because of FE electronics simplicity.

Examples in neutrino and astro-particle physics: OPERA, ARGO.

Experimental set-up

Strip signals discriminated at 50 mV/110 Ω .

Analysis techniques description

Signal treatment:

Pedestal subtraction channel by channels using first 100 samples. Common mode noise estimation using strips without signals.

RPC and streamer properties from measured distributions: Prompt charge: efficiency, multistreamer probability, single streamer charge. Single strip events: streamer amplitude, FWHM, risetime (10% - 90% of amplitude). T_{RPC} - T_{scint} : streamer arrival time (relative to the scint.), time resolution (exp fit on the queue).

Basic things...

Gas mixtures for present generation of experiments made of: Argon (noble gas, good for electron multiplication) Iso-butane (UV quencher, but percentage limited to few % because of flamability issues) R134a (TetraFluoroEtane, UV quencher in addition to iso-butane) SF₆ (eventually added to reduce the charge, making stable economic mixture with low concentrations of quenching gases)

OPERA-like gas mixture: Argon/R134a/iso-butane=76/20/4 + 0.3% SF6. Will be used as a reference mixture in the following. Mixtures with Argon, Iso-butane, R134a, SF₆ will be indicates as "standard" in the following slides.

R134a and SF6 are gases with high Global Warming Power (GWP): they could be banned for ecological reasons.

Last RPC workshop (talk by B. Liberti, 2014 JINST 9 C11003):HFO-1234ze (Tetrafluoropropene, $C_{3}H_{2}F_{4}$) proposed for replacement of R134a and Iso-butane.

Ar/HFO-1234ze binary mixtures

The higher the HFO concentration, the higher the operating voltage and the quenching power. Better to keep HFO concentration to 30%, to limit multistreamers.

Ar/HFO-1234ze binary mixtures

Single streamer charge (pC)

Single streamer amplitude (mV)

FWHM (ns)

The higher the HFO concentration, the higher the operating voltage and the quenching power. Better to keep HFO concentration to 30%, to limit multistreamers.

The higher the HFO concentration, the lower the prompt charge (FWHM smaller).

Ar/HFO-1234yf binary mixtures

Remark: HFO-1234yf is flamable. Qualitatively similar to HFO-1234ze.

Good quenching power also with concentrations of 26% and 28%.

Ar/HFO-1234yf binary mixtures

Single streamer charge (pC)

Single streamer amplitude (mV)

FWHM (ns)

Remark: HFO-1234yf is flamable. Qualitatively similar to HFO-1234ze.

Good quenching power also with concentrations of 26% and 28%.

SF₆ addition

Similar to "standard" mixtures. Even with small additions Strong charge suppression (both in signal amplitude and FWHM).

SF₆ addition

Similar to "standard" mixtures. Even with small additions Strong charge suppression (both in signal amplitude and FWHM). Observed also an increase of multistreamer probability. Tested also on Ar/HFOyf=74/26,70/30 Ar/HFOze=70/30 Ar/HFOyf/ibut=63/34/3. In the following slides, try to repeat the SF6 "miracle" with CF_4 , CO_2 , N_2 .

CF₄ replacement of SF₆

Effects observed with SF_6 addition, are completely absent with CF_4 . Tested also for Ar/HFOze=70/30 base mixture.

CF₄ replacement of **SF**₆

Effects observed with SF_6 addition, are completely absent with CF_4 . Tested also for Ar/HFOze=70/30 base mixture.

CO₂ addition

No streamer charge suppression.

CO₂ addition

No streamer charge suppression. CO_2 shows also a low quenching power. Its addition increases the operating voltage. Several tests performed also with CO_2 addition to "standard" mixtures. Ar/CO2/HFO-1234yf

- 40/35/25
- □ 41/41/18
- △ 52/18/30
- Ar/HFOyf=72/28 (ref)

N₂ addition

The considered mixtures have almost the same HFO concentration. They differ because of the N2/Ar ratio.

The higher the N2 content, the higher the streamer charge and amplitude (the highest among all tested mixtures),

N₂ addition

The considered mixtures have almost the same HFO concentration. They differ because of the N2/Ar ratio.

The higher the N2 content, the higher the streamer charge and amplitude (the highest among all tested mixtures), the operating voltage and the multistreamer probability.

He based gas mixtures

The most striking feature of mixtures with He (instead of Ar) is the improvement in time resolution (also at low efficiency values). A lower efficiency is also observed (probably because of the lower primary ionization).

He based gas mixtures

The most striking feature of mixtures with He (instead of Ar) is the improvement in time resolution (also at low efficiency values).

A lower efficiency is also observed (probably because of the lower primary ionization).

A decrease of the signal FWHM is observed.

Also tested on Ar/R134a/ibut=48/48/4 (with and without SF6).

Conclusions

- The presented tests started a couple of years ago, aimed at replacing gases of the "standard" mixtures with already known and used (in other detectors) ones.
- New ecological Ar/HFO-1234ze binary mixtures are good for streamer operation (HFO concentration > 30% not to have a high multistreamer probability). HFO-1234yf, the flamable isomer, has similar properties.
- Unfortunately no substitute has been found for SF₆, whose addition strongly diminishes the streamer charge.
- **CO₂** neither reduces the charge nor lower the multistreamer probability.
- N_2 is even worsening the mixture properties.
- Ar replacement with He seems interesting, improving the time resolution.