Development of a Single Ion Detector for Radiation Track Structure Studies

F. Vasi, M. Casiraghi, R. Schulte, V. Bashkirov

Outline

- Purpose
- Detector Working Principle
- First Prototype Characterization
- Thick GEMs From The CERN PCB Workshop
- Measurements With a Microbeam
- Efficiency vs Cathode Resistivity
- Summary & Outlook

Purpose

Development of a device for characterization of radiation track structure to study radiation biological effectiveness

Radiation track structure: spatial distribution of energy transfer points in radiationmatter interaction

- Local clustering of energy transfer points, in particular ionizations, is important for the production of initial biological damage
- MC simulations show large ionization clusters induced, in particular, by high LET radiation, which can create complex DNA damages
- Ideal detector should provide information on spatial distribution of ionization events with single ionization resolution

First Prototype Characterization

Source:

PCB:

- Am-241 alphas 2 mm beam
- Working gas:
 - propane
 - 3.3 mm G10 board with common top electrode
 - Holes 0.8 mm, pitch 2 mm
- Cathodes:
 - Float glass
 - Schott glass
- P = 3 mbar HV = -800 V E_d = 10 V/cm

Pulse of 5 mV and 500 ns High gain

Ion Arrival Time

Ion Detection Efficiency

Thickness of The Dielectric Plate

- Protoptype with 4 holes of 1
 mm diameter and a pitch of
 11 mm
- Cathode: Float glass
- Three versions with different thicknesses of an acrylic plate: 3.3 mm, 6.5 mm, and 8.7 mm

Alpha Detection Efficiency

Efficiency: % of primaries producing at least one ionization in one of the holes

Alpha Detection Efficiency

Efficiency: % of primaries producing at least one ionization in one of the holes

Alpha Detection Efficiency

Efficiency: % of primaries producing at least one ionization in one of the holes

The New Prototype

Thick GEMs from the CERN PCB workshop : FR4 1 cm thick

Design 1: 1.5 mm holes, pitch 6 mm

Resistive cathode outside the low *a* pressure volume

Compact low pressure chamber and gas system

Design 2: 1.5 mm holes, pitch 4 mm

THGEM embedded in the chamber lid

Dark Rate: acrylic vs FR4 boards

Reduction of noise with FR4 CERN boards due to better manufacturing technique and, possibly, properties of FR4 material

Design 1 (6 mm pitch) vs Design 2 (4 mm pitch)

Mean counts/trigger: mean number of detected ions per primary particle

	at 2 Torr	(with dead time)
Design 1	10	1.0
Design 2	16	1.5

Measurements at the PTB microbeam

Primaries:

- Protons: 10 MeV
- Alphas: 8 MeV, 20 MeV
- Beam size: ~5 um at the vacuum window
- Primary rate: 6Hz

Detector:

• Design 1 board and Schott glass

	Measured c/t	Expected c/t	Expected c/t with dead time	lon detection efficiency
Alpha 10 MeV	0.7±0.1	5.3	0.7	13%
Alpha 20 MeV	0.3±0.1	1.1	0.2	27%
Proton 10 MeV	0.06±0.1	0.13	0.02	46%

Scan of The Sensitive Area

Electric field lines and electric potential

Beam: 2 mm FWHM at center of SV

Efficiency vs Primary Rate 20 MeV alphas

Efficiency vs Cathode Resistivity

pitch 4 mm

Glass type	Float	Schott	Chinese
Resistivity	10^12 Ωcm	10^11 Ωcm	10^10 Ωcm
Thickness	2 mm	3 mm	1 mm
Efficiency	7%	42%	65%
mean C/T	0.08	0.69	1.03

Further Increase With Larger Pitch

Glass type	Float	Schott	Chinese Pitch: 4 mm	Chinese Pitch: 6 mm
Resistivity	10^12 Ωcm	10^11 Ωcm	10^10 Ωcm	10^10 Ωcm
Thickness	2 mm	3 mm	1 mm	1 mm
Efficiency	7%	42%	65%	89%
Max C/T	0.08	0.69	1.03	2.2

Summary & Outlook

- Ionization events produced in low pressure gas can be detected with single-ion resolution
- The ion detection efficiency can be enhanced and dead time reduced by using thick GEMs (1cm) and by lowering cathode resistivity
- Efficiency needs to be further optimized to reconstruct the 3D spatial distribution of ionization tracks

Main open issues – next steps:

- Optimization of cathode resistivity and design
- Charge-up of dielectric material

Acknowlegements

- Ulrich Giesen for support of microbeam measurements at PTB
- Gas Detector Development Group at CERN for technical support and advice

THANK YOU

Back up slides

PREVIOUS MEASUREMENTS WITH DIFFERENT CATHODES

1 hole 1 mm diameter Board 6.5 mm thickness pitch 1 cm

24x24 holes .8 mm diameter Board 3.3 mm thickness pitch 0.8 mm

CATHODE RESISTIVITY MEASUREMENTS

(at 50 Volts)	A= 279.7 mm ²
ρ(10 ¹²) [Ωcm]	0.53 ± 0.2

Chinese Glass

Dark Rate

Dark Rate

