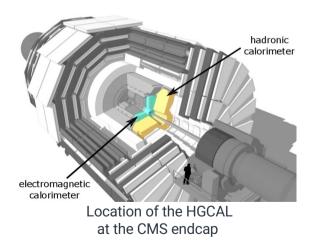
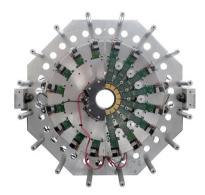

DEPARTMENT < ... > RESEARCH GROUP < ... >

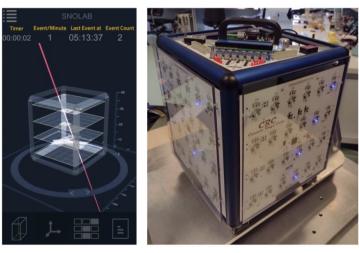
<u>CHARACTERIZATION OF</u> <u>SIPM'S</u>


Masterthesis | 2024-25 | Danté Bouckhout

INTRODUCTION

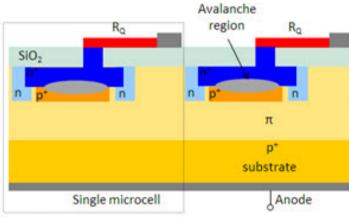


The timing detector prototype as seen in the testbeam area of the SHiP experiment

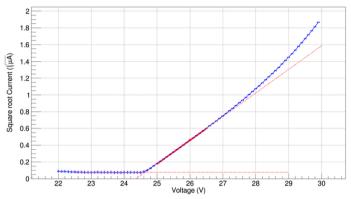


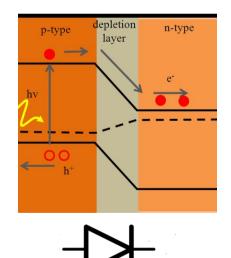
GHENT UNIVERSITY

The Sherbrooke small animal PET, the first PET with APDs

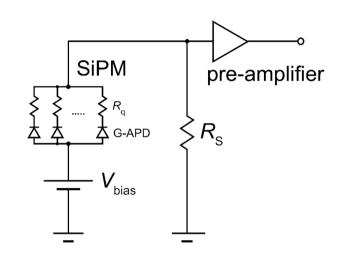


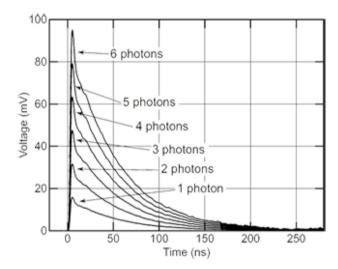
SNOLAB SiPM detector for live cosmic rays


SILICON PHOTOMULTIPLIER

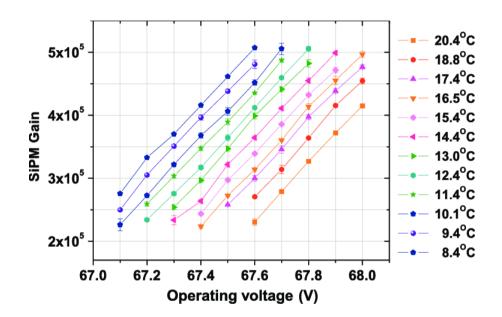

Array of SPAD's

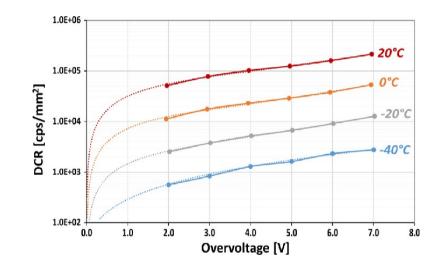
- Single photon avalanche diode
- Diode in reversed bias
- Photon creates e^{-} , h^{+} pair
- Breakdown Voltage -> accelerated e⁻ creates
 more e⁻, h⁺ pair
- Avalanche is self sufficient -> Quenching needed




SILICON PHOTOMULTIPLIER

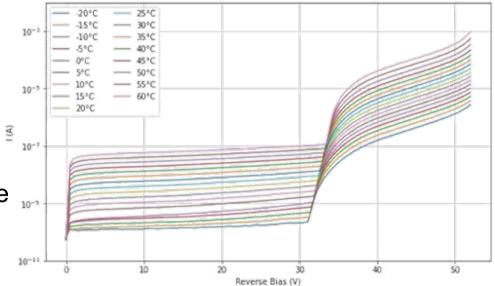
- SiPM outputs sum of all SPAD charge contributions
 - Photons easily countable
 - Particle detection
 - used together with scintillator




– Gain

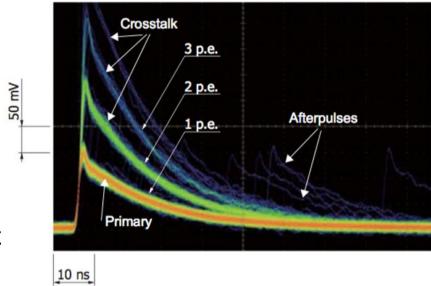
GHENT UNIVERSITY

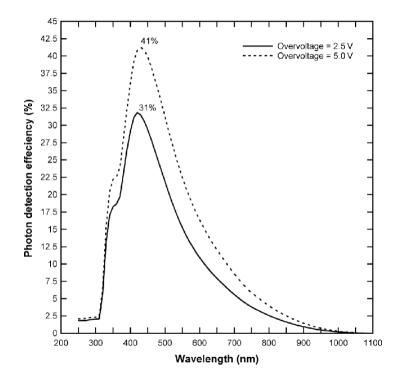
- Charge produced by one photon
- Influences the sensitivity and accuracy of the SiPM
- Varies with temperature
- Dark Count Rate
- Breakdown voltage
- Afterpulsing & crosstalk
- Photon detection Efficiency



- Gain
- Dark Count Rate
 - Rate of pulses generated in absence of light
 - From thermal electrons
 - Can overwhelm low-light signals
- Breakdown voltage
- Afterpulsing & crosstalk
- Photon detection Efficiency

- Gain
- Dark Count Rate
- Breakdown voltage
 - voltage at which the SiPM operates in Geiger mode
 - increases with temperature, affecting the optimal bias voltage setting
- Afterpulsing & crosstalk
- Photon detection Efficiency




– Gain

GHENT UNIVERSITY

- Dark Count Rate
- Breakdown voltage
- Afterpulsing & crosstalk
 - Secondary pulses caused by trapped charges from a previous event.
 - Signals generated in neighboring cells due to charge carriers triggering adjacent pixels.
- Photon detection efficiency

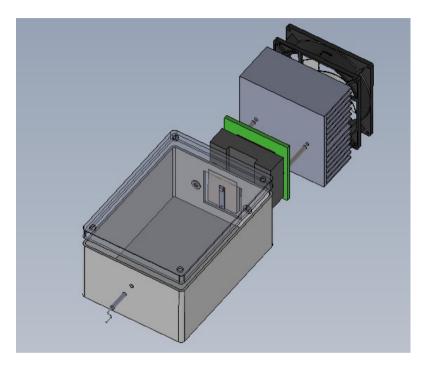
- Gain
- Dark Count Rate
- Breakdown voltage
- Afterpulsing & crosstalk
- Photon detection Efficiency
 - Probability that incoming photon is successfully detected
 - vary with temperature, bias voltage, and photon wavelength

COMPARING TO PMT

- Advantages
 - Cheaper
 - Lower bias voltages
 - Smaller volume
- Disadvantage
 - For low E photon

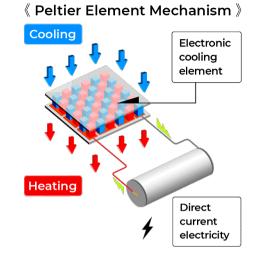
more noise and worse PDE

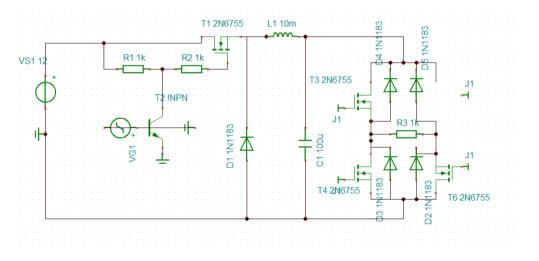
	РМТ	SiPM
Range (nm)	300-800	400-1000+
Internal Gain	10^5-7	10^5-7
Power Draw	Up to 1000V	Less than 100V
Dynamic Range	5 Decades (Fortessa)	7.2 Decades (Quanteon) ³
		Array of microcells increases
Low Light	Large active area and very rare dark	active area, more common dark
Detection	counts	counts (vs PMT) increasing with
		temperature
	Relatively low until the ~800nm mark,	Noisier than PMT except at
Noise	increases with voltage and higher	~800nm+, but comparable over
	emission wavelengths	whole range


Source: Uchicago, B. Ladd, PMT vs SiPM: A Photon Finish

<u>SETUP</u>

- Temperature controlled lighttight box
 - Peltier elements
 - Arduino
 - Controlled photon input
 - Temperature + env sensors
- Front end electronics
 - Amplifier
 - Signal shaper





PELTIER COOLING

- PWM of arduino into LC and H-bridge

- Controll peltier to heat or cool side with SiPM
- Automative setup
 - Using arduino to read temperature and adapt
 Peltier current

FUTURE

- Making of the box
 - Light tightness, ease of use
- SiPM readout
 - Also automatable
- Using SiPM and scintillator grids to track particles

Danté Bouckhout

Master thesis

Exper	imental Particle Physics and Gravity
Е	Dante.bouckhout@ugent.be
Μ	+32 484 69 21 11
www.	ugent.be

f	Universiteit Gent
	@ugent
0)	@ugent
n	Ghent University

