

DEPARTMENT OF PHYSICS AND ASTRONOMY EXPERIMENTAL PARTICLE PHYSICS AND GRAVITY

FEASIBILITY STUDY OF SOIL MOISTURE MONITORING USING SCINTILLATION DETECTORS

Aiko Decaluwe / 21-11-24

INTRODUCTION

WHY STUDY SOIL MOISTURE?

- Problem agriculture: water efficiency only 50%
- Knowledge about soil moisture can help
- Goal project: Improving water management using CRNS

OTHER APPLICATIONS

- Forecasting and mitigation of natural disasters
 - \rightarrow droughts, landslides and flood risks
- Climate and global warming
- Monitoring cosmic radiation and space weather **Drought conditions**

Hard layer of soil repels water

TABLE OF CONTENTS

- Cosmic ray neutrons and their connection with soil moisture
- CRNS
- Scintillation detectors
- GEMs
- What to do next

COSMIC RAY NEUTRONS

COSMIC RAY NEUTRONS

- Origin
 - → primary cosmic rays interact with air molecules atmosphere
 - \rightarrow secondary cosmic rays (p, n, other)
 - → fast neutrons (E≈1MeV) through nuclear evaporation process

– Figure: simulation MCNPX

CONNECTION WITH SOIL MOISTURE

Fast neutrons moderated and thermalized by hydrogen atoms in soil

\rightarrow captured or diffused back into air as slow neutrons (E~1eV)

<u>COSMIC RAY NEUTRON</u> SENSING (CRNS)

HOW TO MEASURE SOIL MOISTURE?

Soil moisture measurements

- \rightarrow small scales: visual, gravimetric method, invasive sensors
- \rightarrow large scales: remote sensing using satellites
- \rightarrow field scale: CRNS

FINAPP CRNS DETECTOR

- Counts slow neutrons
- Radius: 125 m
- Depth: 0-50 cm depth
- Average soil moisture measurement

FINAPP CRNS DETECTOR

Detector

- \rightarrow sheets:
 - ⁶LiF: thermal neutrons

 6 I i + 1 n \rightarrow 3 H + 4 He + 4.78 MeV

 ZnS:Ag (scintillator): ³H, ⁴He, muons \rightarrow Pulse Shape Discrimination algorithm Powered by solar panel and battery

FROM NEUTRON COUNT TO SOIL MOISTURE

But calibration and corrections needed! INIVERSITY

0.115

Neutron count over dry

OUR CRNS

SCINTILLATION DETECTORS

SCINTILLATION DETECTORS

- Set-up 1:
 - \rightarrow plastic scintillator cube
 - \rightarrow neutron screens
 - ⁶Li + ¹n \rightarrow ³H + ⁴He + 4.78 MeV
 - \rightarrow wavelength shifting fiber
 - \rightarrow SiPM
 - \rightarrow HV supply
 - \rightarrow oscilloscope

SCINTILLATION DETECTORS

- Set-up 2
 - \rightarrow 4 cubes
 - \rightarrow mostly muons

– Set-up 3

- \rightarrow small thermal neutron detector
- \rightarrow should only be able to detect neutrons

WHAT TO DO NEXT

- Simulations: URANOS, Geant4
- Use digital scope for different set-ups
- Comparative study of different sensors

Aiko	Decal	uwe
Master	student	

Experimental particle physics and gravity

- E Aiko.Decaluwe@ugent.be
- www.ugent.be

f	Universiteit Gen
\mathbb{X}	@ugent
0	@ugent
in	Ghent Universit

nt

y

FROM NEUTRON COUNT TO SOIL MOISTURE

- invert to find N₀

$$\theta(N) = \frac{0.0808}{\left(\frac{N}{N_0}\right) - 0.372} - 0$$

– Probe measures N and calculates θ

).115

CORRECTIONS TO NEUTRON COUNT

- 1) Atmospheric pressure
- 2) Air humidity
- Incoming neutrons 3)
- biomass 4)

$$N = N_{\rm raw} \cdot C_{\rm p} \cdot C_{\rm h} \cdot C_{\rm inc} \cdot$$

CALIBRATION

Gravimetric method: N₀

- 1) 72 samples
- 2) weigh samples
- 3) dry in oven
- 4) weigh samples again
- 5) soil moisture of every sample: $\theta = \left\{ \frac{M_{cms} M_{cds}}{M_{cms} M} \right\} \times 100$
- 6) take average
 - \rightarrow problem: sensitivity CRNS
 - \rightarrow solution: weighted average

CALIBRATION: WEIGHTED AVERAGE

 Estimate average value
Calculate the penetration depth D of the neutrons for each profile P
Vertically average the values θ_{P,L} over layers L, to obtain a weighted average for each profile P

$$W_d = e^{-2d/D}$$

$$\theta_P = \frac{\sum_i w_i \theta_i}{\sum_i w_i}$$

CALIBRATION: WEIGHTED AVERAGE

4) Horizontally average the profiles θ_{P}

$$W_r = \begin{cases} \left(F_1 e^{-F_2 r^*} + F_3 e^{-F_4 r^*}\right) \left(1 - e^{-F_0 r^*}\right), & 0 \,\mathrm{m} < r \le 1 \,\mathrm{m} \\ F_1 e^{-F_2 r^*} + F_3 e^{-F_4 r^*}, & 1 \,\mathrm{m} < r \le 50 \,\mathrm{m} \\ F_5 e^{-F_6 r^*} + F_7 e^{-F_8 r^*}, & 50 \,\mathrm{m} < r < 600 \,\mathrm{m} \end{cases}$$

$$\langle \theta \rangle = \frac{\sum_{i} w_{i} \theta_{i}}{\sum_{i} w_{i}}$$

5) Use the new $\langle \theta \rangle$ to reiterate through steps 1–5 until value converges

- Gas electron multiplier
 - \rightarrow thin foils with holes

GEM B coated on foils can detect neutrons

$$^{10}B + n \rightarrow ^{7}Li + \alpha + 2.79 \text{ MeV}$$
 (6)

-4000 \

Electric Field

 ${}^{10}B + n \rightarrow {}^{7}Li^* + \alpha + 2.31 \text{ MeV} (94\%)$

5%)