FEASIBILITY STUDY OF SOIL MOISTURE MONITORING USING SCINTILLATION DETECTORS

Aiko Decaluwe / 21-11-24

DEPARTMENT OF PHYSICS AND ASTRONOMY EXPERIMENTAL PARTICLE PHYSICS AND GRAVITY

INTRODUCTION

WHY STUDY SOIL MOISTURE?

- ̶Problem agriculture: water efficiency only 50%
- ̶Knowledge about soil moisture can help
- ̶Goal project: Improving water management using CRNS

OTHER APPLICATIONS

- ̶ Forecasting and mitigation of natural disasters
	- \rightarrow droughts, landslides and flood risks
- ̶Climate and global warming
- ̶Monitoring cosmic radiation and space weather **Drought conditions**

Water runs off the surface

Hard layer of soil repels water

TABLE OF CONTENTS

- ̶ Cosmic ray neutrons and their connection with soil moisture
- ̶ CRNS
- ̶Scintillation detectors
- ̶GEMs
- ̶What to do next

COSMIC RAY NEUTRONS

COSMIC RAY NEUTRONS

- ̶ Origin
	- \rightarrow primary cosmic rays interact with air molecules atmosphere
	- \rightarrow secondary cosmic rays (p, n, other)
	- → fast neutrons (E≈1MeV) through nuclear evaporation process

̶ Figure: simulation MCNPX

CONNECTION WITH SOIL MOISTURE

Fast neutrons moderated and thermalized by hydrogen atoms in soil

\rightarrow captured or diffused back into air as slow neutrons $(E~1eV)$

COSMIC RAY NEUTRON SENSING (CRNS)

HOW TO MEASURE SOIL MOISTURE?

Soil moisture measurements

- \rightarrow small scales: visual, gravimetric method, invasive sensors
- \rightarrow large scales: remote sensing using satellites
- → field scale: CRNS

FINAPP CRNS DETECTOR

- ̶ Counts slow neutrons
- ̶ Radius: 125 m
- ̶ Depth: 0-50 cm depth
- ̶Average soil moisture measurement

FINAPP CRNS DETECTOR

̶ Detector

- \rightarrow sheets:
	- ⁶LiF: thermal neutrons

 6 Li + ^{1}n → ^{3}H + ^{4}He + 4.78 MeV

• ZnS:Ag (scintillator): ³H, ⁴He, muons → Pulse Shape Discrimination algorithm ̶Powered by solar panel and battery

FROM NEUTRON COUNT TO SOIL MOISTURE

But calibration and corrections needed! $\overline{\mathbb{H}\mathbb{H}}$ INIVERSITY

0.115

Neutron count over dry

OUR CRNS

SCINTILLATION DETECTORS

SCINTILLATION DETECTORS

- ̶ Set-up 1:
	- \rightarrow plastic scintillator cube
	- \rightarrow neutron screens
		- 6 Li + ^{1}n → ^{3}H + ^{4}He + 4.78 MeV
	- \rightarrow wavelength shifting fiber
	- \rightarrow SiPM
	- \rightarrow HV supply
	- \rightarrow oscilloscope

SCINTILLATION DETECTORS

- ̶Set-up 2
	- \rightarrow 4 cubes
	- → mostly muons

̶Set-up 3

- → small thermal neutron detector
- → should only be able to detect neutrons

18

WHAT TO DO NEXT

- ̶Simulations: URANOS, Geant4
- ̶ Use digital scope for different set-ups
- ̶ Comparative study of different sensors

Experimental particle physics and gravity

- E Aiko.Decaluwe@ugent.be
- www.ugent.be

FROM NEUTRON COUNT TO SOIL MOISTURE

$-$ invert to find N_0

$$
\theta(N) = \frac{0.0808}{\left(\frac{N}{N_0}\right) - 0.372} - 0
$$

̶Probe measures N and calculates θ

0.115

CORRECTIONS TO NEUTRON COUNT

- 1) Atmospheric pressure
- 2) Air humidity
- 3) Incoming neutrons
- 4) biomass

$$
N=N_{\text{raw}}\cdot C_{\text{p}}\cdot C_{\text{h}}\cdot C_{\text{inc}}\cdot
$$

CRNS Finapp Sampling Points 100m Buffer 200m Buffer

CALIBRATION

Gravimetric method: N_0

- 1) 72 samples
- 2) weigh samples
- 3) dry in oven
- 4) weigh samples again
- 5) soil moisture of every sample: $\theta = \left\{\frac{M_{cms} M_{cds}}{M}\right\} \times 100$
- 6) take average
	- → problem: sensitivity CRNS
- ■ → solution: weighted average

CALIBRATION: WEIGHTED AVERAGE

1) Estimate average value 2) Calculate the penetration depth D of the neutrons for each profile P 3) Vertically average the values θ_{PL} over layers L, to obtain a weighted average for each profile P

$$
W_d = e^{-2d/D}
$$

$$
\theta_P = \frac{\sum_i w_i \theta_i}{\sum_i w_i}
$$

CALIBRATION: WEIGHTED AVERAGE

4) Horizontally average the profiles $\Theta_{\textsf{P}}$

$$
W_r = \begin{cases} \left(F_1 e^{-F_2 r^*} + F_3 e^{-F_4 r^*} \right) \left(1 - e^{-F_0 r^*} \right), & 0 \text{ m} < r \le 1 \text{ m} \\ F_1 e^{-F_2 r^*} + F_3 e^{-F_4 r^*}, & 1 \text{ m} < r \le 50 \text{ m} \\ F_5 e^{-F_6 r^*} + F_7 e^{-F_8 r^*}, & 50 \text{ m} < r < 600 \text{ m} \end{cases}
$$

$$
\langle \theta \rangle = \frac{\sum_{i} w_i \theta_i}{\sum_{i} w_i}
$$

5) Use the new $\langle \theta \rangle$ to reiterate through steps 1–5 until value converges

- ̶ Gas electron multiplier
	- \rightarrow thin foils with holes

 → strong electric fields create electron avalanches

̶ GEM B coated on foils can detect neutrons

$$
{}^{10}B + n \rightarrow {}^{7}Li + \alpha + 2.79 \text{ MeV (6)}
$$

−4000 ک

Electric Field

 $^{10}B + n \rightarrow ^7Li^* + \alpha + 2.31$ MeV (94%)

 $\frac{3}{2}$