

DEPARTMENT < ... > RESEARCH GROUP < ... >

STUDY OF TOP QUARK PRODUCTION AT FUTURE ELECTRON-POSITRON COLLIDERS

Stijn Verhulst

Promotor: prof. Didar Dobur Mentor: dr. Kirill Skovpen

WHY STUDY TOP QUARKS?

EXTENSIVE TOP QUARK RESEARCH AT LHC

GHENT UNIVERSITY

CMS Preliminary

THE NEED FOR A NEW COLLIDER

THE NEED FOR A NEW COLLIDER

Improve precision in: electroweak observables

 Look for new physics effects through this high precision

5

HADRON AND LEPTON COLLIDERS

GHENT

UNIVERSITY

e⁺e⁻ are pointlike

High energies (> 380 GeV) require linear colliders

> **Clean experimental** environment

FUTURE LEPTON COLLIDERS LUMINOSITIES

GHENT

5000 √s (GeV)

CROSS SECTION THRESHOLD SCAN

FCC improves precision on measurements of the top quark:

- Mass and Width
- Couplings: y_t , g_{tWb} , g_{Ztt} , $g_{\gamma tt}$
- FCNC and rare decays
- Asymmetries and other properties

ANALYSIS OF THE TOP QUARK

STRATEGY

- Decay Channels:
- $t\bar{t} \rightarrow b\bar{b}W^+W^- \rightarrow b\bar{b}qq\bar{q}q$ $t\overline{t} \to b\overline{b}W^+W^- \to b\overline{b}q\overline{q}l^-\overline{\nu}(l^+\nu)$ $t\bar{t} \rightarrow b\bar{b}W^+W^- \rightarrow b\bar{b}l^+\nu l^-\bar{\nu}$

• Decay Unannels ⁻		
Doody Onlannoid.	Final state	BR [%]
$t\overline{t} \to b\overline{b}W^+W^- \to b\overline{b}qq\overline{q}\overline{q}$	Fully Hadronic	46.2
$t\overline{t} \to b\overline{b}W^+W^- \to b\overline{b}q\overline{q}l^-\overline{\nu}(l^+\nu)$	Semi Leptonic	43.5
$t\overline{t} \to b\overline{b}W^+W^- \to b\overline{b}l^+\nu l^-\overline{\nu}$	'Fully' Leptonic	10.3
 Threshold energy range Gives less background 		

10⁻¹

GHFNT UNIVFRSITY

¹⁰

SIMULATION FRAMEWORK: KEY4HEP

Event Generation:	 Madgraph + Pythia8
Detector Simulation:	• Delphes
Data Format: EDM4HEP	 Contains full information about simulation and reconstruction
FCCAnalysis:	 preform associations
Machine Learning	 Event Selection and Reconstruct

METHODS OF RECONSTRUCTION

- Kinematic fitting: χ^2 , Likelihood Methods
- BDT's for selecting the proper combination of final-state objects
- Deep Neural Networks for top-tagging:
 - DeepAK8, ATLAS t-tagger

NEXT STEPS

- Develop advanced algorithms to:
 - Reconstruct the top quark with high precision
 - Separate signal vs background
- Investigate how to measure top quark parameters from the threshold cross section scan
- A look into Toponium?
 - Spin correlations

FCC TIMELINE

The tentative timeline is:

- **2025:** Completion of the FCC Feasibility Study
- 2027–2028: Decision by the CERN Member States and international partners
- **2030s:** Start of construction
- **Mid-2040s:** FCC-ee begins operation and runs for approximately 15 years ullet
- **2070s:** FCC-hh begins operation and runs for approximately 25 years

DISCUSSION ON BACKGROUNDS

GHEI

UNIV

e⁺e⁻ collisions:

More "clean", all events usable

TOP QUARK RECONSTRUCTION

KEY4HEP DETAILED

- Madgraph + Pythia8
 - generate simulated event samples and compute cross sections for hard scattering and decay processes of particles
 - Specify additional parameters such as ISR/FSR
 - generates Monte Carlo data and hold information about all of the event particles at all stages before detection.

KEY4HEP DETAILED

- Delphes
 - Takes the input from Madgraph/Pythia
 - Simulates the detector (IDEA) response
 - Reconstructs our particles and saves them
 - Represents the detector's "view"

Pythia sponse aves them

KEY4HEP DETAILED

- FCCAnalysis
 - Works on top of EDM4hep
 - Allows one to preform various associations like:
 - Reconstructed with MC generated particles
 - Vertex reconstruction

ssociations like: ated particles

DETECTORS

 IDEA (International Detector for Electronpositron Accelerators)

CLD (CLIC-like Detector)

