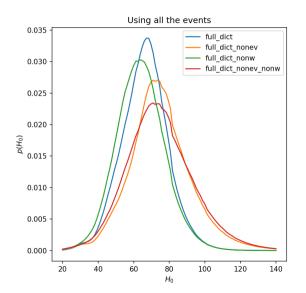


Dark siren H_0 measurement using subsets of galaxy catalog

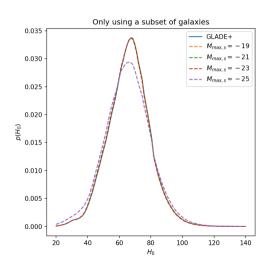
MUHAMMAD KHUZAIFA NAVEED

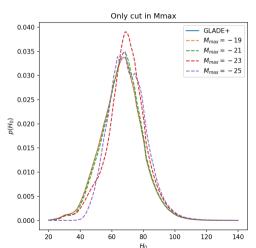
COSMOLOGY WITH GWS

Low redshift:

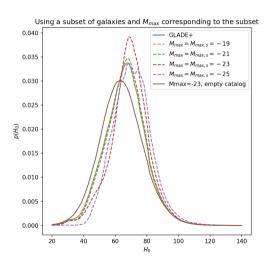

$$d_L pprox rac{cz}{H_0}$$

- \blacksquare H_0 : measurement techniques:
 - Cepheid Photometry: dependent on cosmic distance ladder
 - CMB: from models
 - GW: comparable to cepheid photometry but independent of cosmic distance ladder
 - Bright siren: EM counterparts for GW signals
 - lacktriangle Dark siren: no EM counterparts \Rightarrow galaxy catalogs

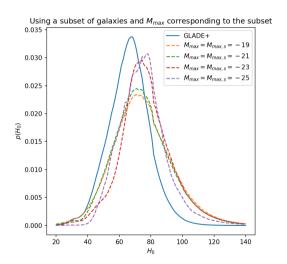

DARK SIREN ANALYSIS


- Bayesian statistics
- a number of potential host galaxies ⇒ LOS redshift prior
- catalog incompleteness: host galaxy can be present in the galaxy catalog or not
 - in-catalog part: weighted sum of Gaussians
 - out-of-catalog part: fill using Schechter function
- this project: limit the potential host galaxies (only bright galaxies)
 - in-catalog part: make subsets of the galaxy catalog (Mmax_subset)
 - out-of-catalog part: maximum magnitude limit for the Schechter function (Mmax_cut)
- weighing: luminosity, evolving host probability with redshift!

EFFECTS OF WEIGHING



Assuming evolving host probability and luminosity weighing



Assuming evolving host probability and luminosity weighing

ASSUMING NON-EVOLVING HOST PROBABILITY AND NO LUMINOSITY WEIGHING

SOME OBSERVATIONS AND FUTURE PLANS

- Mmax_subset: shift to a lower value with higher uncertainty
- Mmax_cut: shift to a higher value with lower uncertainty
- Mmax_cut_subset: slightly higher value with lower uncertainty
- out-of catalog part dominating: due to incomplete catalog?
 - Will a deeper catalog be dominated by the in-catalog part?
- Why the apparent opposite behavior of in-catlog and out-of-catalog part?
- Subsets using weighted sampling: Will the have the same effect as evolving host probability and luminosity weighing?
- Deeper catalog: simulations (BUZZARD)