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WHAT TO EXPECT?

— Current GW observations
— EXxotic compact objects
— What are they?
— How to find them?
— tBilby
— Results
— Gaslighting a large collaborative codebase
— Future steps
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WHAT DO WE CURRENTLY SEE IN THE GW SKY?

Binary coalescence Stochastic GW background
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WHAT DO WE CURRENTLY SEE IN THE GW SKY?

Binary coalescence
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GRAVITATIONAL WAVES

GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral

B. P. Abbott et al.”

(LIGO Scientific Collaboration and Virgo Collaboration)
(Received 26 September 2017; revised manuscript received 2 October 2017; published 16 October 2017)

Gravitational-wave observations alone are able to mea-
sure the masses of the two objects and set a lower limit on
their compactness, but the results presented here do not
exclude objects more compact than neutron stars such as
quark stars, black holes, or more exotic objects [57-61].
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GRAVITATIONAL WAVES

GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral

B. P. Abbott et al.”

(LIGO Scientific Collaboration and Virgo Collaboration)
(Received 26 September 2017; revised manuscript received 2 October 2017; published 16 October 2017)

Gravitational-wave observations alone are able to mea-
sure the masses of the two objects and set a lower limit on
their compactness, but the results presented here do not
exclude objects more compact than neutron stars such as
quark stars, black holes, or more exotic objects [57-61].

GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole
with a 2.6 Solar Mass Compact Object

Second, our discussion has thus far neglected the possibility that the secondary component is an exotic
compact object, such as a boson star (Kaup 1968) or a gravastar (Mazur & Mottola 2004), instead of an
NS or a BH. Depending on the model, some exotic compact objects can potentially support masses up

to and beyond 2.6 M (Cardoso & Pani 2019). Our analysis does not exclude this hypothesis for the

secondary.
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GRAVITATIONAL WAVES
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GRAVITATIONAL WAVES
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EXOTIC COMPACT OBJECTS

— Hypothetical objects between neutron stars (NSs) and
black holes (BHS) In compactness
— Hard to distinguish with EM observations

< EM probes : spin distributions, shadows, accretion, tidal disruption
4 GWs : echoes, resonances, spin distributions, inspiral, merger
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EXOTIC COMPACT OBJECTS

— Why are they Interesting?
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EXOTIC COMPACT OBJECTS
— Why are they Interesting?
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New states of matter

Beyond the Standard Model physics
Extensions of GR

Quantum gravity
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GRAVITATIONAL WAVES

— EM observations probe surface
(NS glitches are an exception)

— GWs probe mass-distribution
dynamics
— Inner structure

—
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ECOS AND HOW FIND THEM

— Look for tidal resonances
during inspiral
— Leave imprint on phase

evolution Qg

— Not detected thus far ﬁi

Resonance of Sound Waves

Tuning fork A Tuning fork B

C
\—

/ Sound waves
\

95%\

Vibrating air column Sympathetic vibration
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ECOS AND HOW FIND THEM

— Look for tidal resonances
during inspiral
— Leave imprint on phase

evolution
— Not detected thus far

Resonance of Gravitational Waves

(E)CO A (E)CO B

gravitational waves
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Vibrating spacetime Sympathetic vibration
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ECOS AND HOW FIND THEM

— Resonance and phase shift are linked to “rigidity”
(composition) of objects

— Constrains EOS

— Basis of sine-gaussian wavelets to model resonance
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T1BILBY

— Each wavelet adds 5 DOF
— Use tBilby
— Transdimensional Bilby
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=> computational cost!
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TRANSDIMENSIONAL SAMPLING

— Dimensionality N = sampling parameter
— Reversible Jump MCMC

— Posterior penalised by Occam factor (weighs model
complexity)

likelihood

P(AIB) ‘: P(A) X ACL0)

posterior E marginal
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1BILBY

— Extension to Bilby for transdimensional inference

— tBilby samples In full N, but evaluates likelihood over
<N

— Likelihood evaluation is the most expensive step,
according to the tBilby authors
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WHERE ARE WE NOW?

— Extended Bilby to use multiple
wavelets Fasiuil

— Allow for superposition of IMR* signal
and wavelet

— Recover Injected wavelet
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CORNER PLOTS

_ Visualise multi- M’
dimensional data w N

— On-diagonal: parameter
distributions S

30.0413-25

— Off-diagonal: parameter
correlations

1045.99+32-29
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RECOVERY RESULTS
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— Sampler seems to sample
prior. Issue occurs for
different samplers

— Possibly too high SNR
— Pipeline Is designed for

relatively low SNRs,
here SNR = 1000+

— Possibly bug in code

— Bilby still works on other

Inference jobs, so hard
to find what It Is
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NEXT STEPS

— Recover wavelet(s) with Bilby

— Recover wavelet + IMR with Bilby
— Implement wavelets In tBilby

— Check computational limits
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FUTURE PLANS: TBILBY RUNS WELL

— Recovery on more complex waveforms
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FUTURE PLANS: TBILBY RUNS POORLY

— RIMCMC probably needed, not in Bilby currently
— Try using wavelets to model simpler signals (e.g.

detector glitches)
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