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GRAVITATIONAL WAVES FROM CBC
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(Top) Kip Thorne; (Bottom) B. P. Abbott et 

al. [8]; adapted by APS/Carin Cain

https://physics.aps.org/articles/v16/29#c8


THE NOISE
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EXTRACTING PARAMETERS
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CALCULATE PARAMETERS WITH BILBY
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𝑚1 = ⋯

𝑚2 = ⋯

𝐷𝐸𝐶 = ⋯

𝑅𝐴 = ⋯

Very slow



RESIDUAL ANALYSIS
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WHICH WAVEFORM TO USE?
Waveform Precession Higher harmonics

IMRPhenomD

IMRPhenomHM

IMRPhenomPv2

IMRPhenomXPHM
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DIFFERENT RESIDUALS
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Correct Waveform Wrong waveform

Real GW event: No 

blue part can be 

plotted



GOAL OF THESIS

• Advancing detectors → More data

• Better waveform → Curse of dimensionality 

   → long runtimes

• Less advanced waveforms → less parameters

• 2 goals:

  Dirty run →Which features are we missing?

  Search for unmodeled features
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CONVOLUTIONAL 
NEURAL NETWORK
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GENERAL STRUCTURE

• Convolutional layers

• Pooling layers

• Dropout, fully connected layers
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Taherkhani, A., Cosma, G. & McGinnity, T.M. A Deep Convolutional
Neural Network for Time Series Classification with Intermediate
Targets



PIPELINE

13

Inject simulated 
signal

Choose waveform 
for reconstruction

Create residual Train ML model
Test classifier with 
simulated signals 

not in the training set



RESULTS
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DATA GENERATION

100k residuals + Bilby = Computational expensive

→Solution : SciPy optimize

• Injection signal → randomly generated parameters

• Injection waveform → IMRPhenomXPHM

• Recovered signal → SciPy parameters

• Recovered waveform → IMRPhenomXPHM or 

IMRPhenomPv2
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DATA

• Class labels 1 or 0:

• 1: injection waveform = recovered waveform

• 0: injection waveform ≠ recovered waveform

• If 0 → recovered parameters error larger

• Check this: Relative mistake, 2000 runs 
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DIFFERENCE RELATIVE ERROR

17



TEST ON TRAINING SIZE
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BEST RESULTS

100k training set 50k test set
IMRPhenomPv2 

and
IMRPhenomXPHM

Result: 
82.9% 

accuracy
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CONFUSION MATRIX
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Correct waveform =1

Wrong waveform =0

= 39.01%

= 39.46%

= 11.64%

= 9.89%



POSSIBLE REASON FOR 80% ACCURACY
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Correct waveform, Label 1 Wrong waveform, Label 0
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FUTURE PLANS
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OPTIMIZATION OF 
ALGORITHM

ADDING MORE 
WAVEFORMS

TESTING ON REAL 
GRAVITATIONAL WAVES

SEARCH UNMODELLED 
FEATURES



QUESTIONS?
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EXTRA CNN STRUCTURE
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