

A NOVEL APPROACH TO DISCOVER UNMODELLED FEATURES IN GRAVITATIONAL WAVE SIGNALS

Matteo Vereertbrugghen

Promotor: Archisman Ghosh Mentor: Freija Beirnaert

Recap

Machine learning algorithm

Results

Future plans

GRAVITATIONAL WAVES FROM CBC

THE NOISE

EXTRACTING PARAMETERS

Returns Posterior distribution

CALCULATE PARAMETERS WITH BILBY

GHENT UNIVERSITY

- $m_1 = \cdots$
- $m_2 = \cdots$
- $DEC = \cdots$
- $RA = \cdots$

RESIDUAL ANALYSIS

WHICH WAVEFORM TO USE?

Waveform	Precession
IMRPhenomD	
IMRPhenomHM	
IMRPhenomPv2	
IMRPhenomXPHM	

DIFFERENT RESIDUALS

Correct Waveform

Wrong waveform

Real GW event: No blue part can be plotted

GOAL OF THESIS

- Advancing detectors \rightarrow More data
- Better waveform \rightarrow Curse of dimensionality

\rightarrow long runtimes

- Less advanced waveforms \rightarrow less parameters
- 2 goals:

Dirty run \rightarrow Which features are we missing? Search for unmodeled features

CONVOLUTIONAL NEURAL NETWORK

GENERAL STRUCTURE

- Convolutional layers
- Pooling layers
- Dropout, fully connected layers

RESULTS

DATA GENERATION

100k residuals + Bilby = Computational expensive →Solution : SciPy optimize

- Injection signal \rightarrow randomly generated parameters
- Injection waveform \rightarrow IMRPhenomXPHM
- Recovered signal \rightarrow SciPy parameters
- Recovered waveform → IMRPhenomXPHM or IMRPhenomPv2

ed parameters PHM

- Class labels 1 or 0:
 - 1: injection waveform = recovered waveform
 - 0: injection waveform ≠ recovered waveform
- If $0 \rightarrow$ recovered parameters error larger
 - Check this: Relative mistake, 2000 runs

waveform waveform

DIFFERENCE RELATIVE ERROR

GHENT

Distribution of Relative Mistakes in Mass 1

TEST ON TRAINING SIZE

BEST RESULTS

Result: 82.9% accuracy

CONFUSION MATRIX

OR 80% ACCURAC AS

FUTURE PLANS

OPTIMIZATION OF ALGORITHM

ADDING MORE WAVEFORMS

TESTING ON REAL GRAVITATIONAL WAVES

SEARCH UNMODELLED FEATURES

EXTRA CNN STRUCTURE

```
model = nn.Sequential(
nn.Conv1d(1, 16, kernel_size=5, padding=2),
nn.ReLU(),
nn.MaxPool1d(2),
nn.Dropout(0.4), # Dropout added
nn.Conv1d(16, 32, kernel_size=5, padding=2),
nn.ReLU(),
nn.MaxPool1d(2),
nn.Dropout(0.4),
nn.Conv1d(32, 128, kernel_size=5, padding=2),
nn.ReLU(),
nn.MaxPool1d(2),
nn.Dropout(0.4),
nn.Flatten(),
nn.Linear(128 * (num_timesteps // 8), 512), # Increase neurons
nn.ReLU(),
nn.Dropout(0.5),
nn.Linear(512, 256), # Add extra hidden layer
nn.ReLU(),
nn.Dropout(0.5),
nn.Linear(256, num_classes) # Output layer
```

GHENT UNIVERSITY

Convolutional Layers for Feature Extraction

Fully-connected Layers for Classification