

Dark siren H_0 measurement using bright subsets of galaxy catalog

MUHAMMAD KHUZAIFA NAVEED

THE HUBBLE TENSION

- two ways of measuring Hubble constant ⇒ two different results
 - directly from distance and redshift (SNIa): 73.30 \pm 1.04 km s⁻¹ Mpc⁻¹[Riess et al., 2022]
 - indirectly from CMB: $67.4 \pm 0.5 \text{ km s}^{-1} \text{Mpc}^{-1}$ [Aghanim et al., 2020]
- possible reasons:
 - problem with *\\CDM*
 - problem in cosmic distance ladder
- GW-based H₀ measurements
 - independent of traditional methods
 68⁺¹²₋₈ km s⁻¹ Mpc⁻¹ [Abbott et al., 2023]

COSMOLOGY WITH GWS

Low redshift:

 $d_L \approx rac{cz}{H_0}$

- H_0 measurement techniques:
 - d_L from GW, z from EM observations
 - Bright siren: EM counterparts for GW signals (only 1 till date)
 - Dark siren: no EM counterparts ⇒ galaxy catalogs

DARK SIREN ANALYSIS

- gwcosmso: Bayesian statistics
- a number of potential host galaxies ⇒ Line-of-sight (LOS) redshift prior
 - combine to get a redshift prior for an event
- catalog incompleteness: host galaxy present in the galaxy catalog or not
 - in-catalog part: weighted sum of Gaussians
 - out-of-catalog part: fill using Schechter function

DARK SIREN ANALYSIS

DARK SIREN ANALYSIS

this project: use bright galaxies, in K-band, to trace the matter distribution (high *z*)

- in-catalog part: make subsets of the galaxy catalog
- out-of-catalog part: maximum magnitude limit for the Schechter function
- GW data:
 - GWTC-3: LVK O1-O3 data
 - high SNR(>11) events
- Galaxy catalog: GLADE+
 - all sky composite catalog
- Simulations:
 - BUZZARD mock catalog: sky area of 1120 *deg*², DES survey
 - GWSim for simulated GW events

ANALYSIS USING BRIGHTEST PERCENTILES

ANALYSIS USING BRIGHTEST PERCENTILES

ANALYSIS USING BRIGHTEST PERCENTILES

- high-z tail remains unchanged
- redshift prior: galaxies get more weight
- using all events: higher median value with tighter constraints
- GLADEP10: catalog becomes increasingly empty

EFFECTS OF IN- AND OUT-OF-CATALOG PART

10/17

EFFECTS OF IN- AND OUT-OF-CATALOG PART

- only using a subset: change only noticeable for extreme cut
- major contribution from out-of-catalog term

11/17

SOME OBSERVATIONS AND FUTURE DIRECTION

- noticeable improvement: shift to a higher median value with tighter constraints
- Limit: brightest 20-30%
 - catalog becomes increasingly empty
- Next step (in progress): test and verify the results with simulations
 - BUZZARD mock catalog + simulated events (GWSim)

BUZZARD

BUZZARD

rhalo distribution of the percentiles

- apparent magnitude threshold (m_{th}) of 18 \Leftrightarrow 13.5 for GLADE+
- high-z tail remains unchanged
- need to fit Schechter parameters
- we trace central galaxies using brightest percentiles

CONCLUSION

- GLADE+
 - noticeable improvement to existing results
 - out-of-catalog term dominating
 - only 1 million (out of 22.5 million) galaxies present in K-band
 - why K-band?
 - magnitude in K-band correlates with the total luminous mass
 - Schechter function for other bands (e.g. B-band) not well studied
- BUZZARD
 - we trace central galaxies using brightest percentiles in the K-band
 - what next
 - fit Schechter parameters to generate LOS redshift prior
 - run dark siren analysis
 - repeat for deeper cut ($m_{th} > 18$)

Dark siren H_0 measurement using bright subsets of galaxy catalog

MUHAMMAD KHUZAIFA NAVEED

REFERENCES

Abbott, R. et al. (2023).

Constraints on the Cosmic Expansion History from GWTC-3.

The Astrophysical Journal, 949(2):76.

Aghanim, N. et al. (2020).

Planck2018 results: VI. Cosmological parameters.

Astronomy & Astrophysics, 641:A6.

Cern (2021).

Exploring the Hubble tension; CERN Courier.

Riess et al. (2022).

A Comprehensive Measurement of the Local Value of the Hubble Constant with $1 km s^{-1} Mpc^{-1}$ Uncertainty from the Hubble Space Telescope and the SH0ES Team. *The Astrophysical Journal Letters*, 934(1):L7.