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INTRODUCTION
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WHY STUDY SOIL MOISTURE?

̶ Water scarcity

̶ 70% fresh water used for agricultural production

̶ SM measurements

̶ CRNS
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(TECE)
(food and agriculture organization of the united states)
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COSMIC RAY NEUTRONS
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COSMIC RAY NEUTRONS
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Origin: cosmic rays
→ First protective layer: geomagnetic field

• Shielding: cut-off rigidity (0-17 GV)

→ Second protective layer: atmosphere
•   primary cosmic rays interact with air molecules   
       atmosphere
•    secondary cosmic rays 
   (p, n, other) 
•    fast neutrons (E≈1MeV) 
       through nuclear evaporation
       process

 (O. Adriani et al., 2016)



CONNECTION WITH SOIL MOISTURE

Fast neutrons moderated by hydrogen atoms in soil 
 → captured or diffused back into air as low energy
         neutrons
    → dry/wet soils = many/few neutrons
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(International atomic energy agency, 2018) (Weimar et al., 2020)



HOW TO MEASURE SOIL MOISTURE?

Soil moisture measurements

   →small scales: visual, gravimetric method, invasive sensors

   → large scales: remote sensing using satellites

   → field scale: CRNS
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(Svynchuk et al., 2021) (Deyan Georgiev, 2024)



COSMIC RAY NEUTRON 

SENSING (CRNS)
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FINAPP CRNS DETECTOR

̶ Counts low energy neutrons 

̶ Radius: 125 m

̶ Depth: 0-50 cm depth 

̶ Average soil moisture 

 measurement
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(Finapp, 2024)



FINAPP CRNS DETECTOR

̶ Detector

 → sheets: 

•  6LiF: thermal neutrons

•  ZnS:Ag (scintillator): 3H, 4He, muons

   → Pulse Shape Discrimination algorithm

̶ Powered by solar panel and battery 
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(Finapp, 2024)



FROM NEUTRON COUNT TO SOIL MOISTURE

But calibration and corrections needed!
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Soil moisture

Neutron count

Neutron count over dry 

soil



CALIBRATION

̶ Gravimetric method: 16 samples

̶ Weighted average: θ = 31,6%

̶ N0 = 2309
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(Finapp, 2024)



CORRECTIONS

14

1) Atmospheric pressure

2) Air humidity

3) Incoming cosmic radiation



RESULTS

̶ Data: weather station and CRNS (25/01 – 21/02)

̶ CoRNy: A Cosmic-Ray Neutron processing toolbox for pythonData

̶ Corrections: 
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RESULTS
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SCINTILLATION DETECTOR
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SCINTILLATION DETECTORS

̶ Set-up 1:  

   → 4 plastic scintillator cube

   → neutron screens

   → wavelength shifting fiber

   → SiPM

   → oscilloscope
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(Y. Abreu et al 2017)



SCINTILLATION DETECTORS
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̶ Set-up 2

  → small thermal neutron detector

̶ Set-up 3

   → flat scintillation cube

   

(Eljen technology)



RESULTS
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APPROACH BY 

SIMULATIONS
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URANOS

̶ Ultra Rapid Adaptable Neutron-Only Simulation for 

Environmental Research

̶ Physical parameters: θ, Rc , h

̶ Layers: 
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URANOS

̶ Computational parameters: area and source size

       → 50 m2

̶ Detector: geometry

   → CRNS: 20x20cm screen

   → self-made detector: 10x10cm screen

̶ #neutrons: 120n/m2/s → 360 000 n/m
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RESULTS
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SM Finapp (n/min) Self-made (n/min)

1% 98 52

30% 45 24

43% 35 22

50% 31 18
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CALIBRATION: WEIGHTED AVERAGE

1) Estimate average value

2) Calculate the penetration depth D of 

     the neutrons for each profile P

3) Vertically average the values θP,L over

     layers L, to obtain a weighted

     average for each profile P

28(M, Shrön et al., 2017)



CALIBRATION: WEIGHTED AVERAGE

4) Horizontally average the profiles
θP

5) Use the new θ to reiterate through
steps 1–5 until value converges

29(M, Shrön et al., 2017)



ATMOSPHERIC PRESSURE CORRECTION

̶ P0 =reference atmospheric pressure (time calibration)

̶ P = actual atmospheric pressure

̶ β= barometric coefficient that is related to the local mass attenuation 

length of neutrons in air (0,0076)



AIR HUMIDITY CORRECTION

Δ ρv0  = Difference in the absolute humidity at the time of measurement (ρv0) 

and at the reference time (ρref
v0) in gm−3 (time of calibration)



INCOMING NEUTRON CORRECTION

1) The effect of changes to incoming neutron intensity

    → I =  neutron monitor count at the time of interest

  → Iref = neutron monitor count at calibration time

2) Effect geomagnetic cutoff rigidity

   → neutron monitor at different location

  → Rc = rigidity CRNS

       → Rc,ref = rigidity neutron monitor
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