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Structure - LVE relationship for complex polymers:

Inverse

Direct

Flow propertiesMolecular structure

Tailored 
polymers

polydisperse polymers

Modeling: Working on 
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Linear regime

Sample characterization

Supramolecular polymers2



Tube-based model for predicting the LVE of complex 
polymer melts 

Tube model – At the mesoscopic scale
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de Gennes, Doi and Edwards



Relaxation modulus of a polymer
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Doi & Edwards (1967), de Gennes (1971)

Relaxation modulus: Rouse process:

Me,0 , τe

NG0

Equilibrium state:
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Doi & Edwards (1967), de Gennes (1971)

Me,0
τe

Equilibrium state:

Tube picture

Tube picture

5



Reptation process

Diffusion process along the curvilinear axis of the tube

Relaxation modulus of a polymer
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Contour length Fluctuations:

Relaxation modulus of a polymer
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Arm retraction:

Process entropically unfavorable
Long relaxation times

Milner, McLeish 1997

Relaxation modulus of a polymer

8



Constraint Release processes (CR)
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Constraint Release processes (CR)
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Constraint Release processes (CR)
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The polymer fraction already relaxed = solvent

Dynamic tube dilation:

Constraint Release processes (CR)
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Relaxation modulus of a polymer
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Dynamic tube dilation:

Constraint Release processes (CR)

On the reptationand the fluctuations
process:

Leq,0

x=0

x=1

x=1/3

Leq(t)

x=1/3

Local effect

Inter-relationship between all the relaxation mechanisms

Speeds up the polymer relaxation

Marrucci, 1985

14



15

Structure - LVE relationship for complex polymers:

Model architectures:

symmetric starLinear chains



Structure - LVE relationship for complex polymers:

E. van Ruymbeke, R. Keunings, C. Bailly, J.N.N.F.M., 2005 
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M. Ahmadi, C. Bailly, R. Keunings, M. Nekoomanesh, E. van Ruymbeke, Macromolecules, 2011
E. van Ruymbeke, C. Bailly, R. Keunings, D. Vlassopoulos, Macromolecules, 2006. 16



17

LVE of Models branched 
polymers

symmetric star

Asymmetric star

Linear chains

H polymer

Pompom polymer

Rheology of entangled 
associating polymers 

Rheology as characterization 
tool for industrial samples

Objectives

Rheology polydisperse
samples



Unentangledversus entangledsupramolecular 
building bocks 

+ metal
+ metal

t

G(t)
Elastic reversible network

Viscoelastic 
building blocks

t

G(t)
Elastic reversible network

Liquid-like behavior

- Short blocks
- Polymer solution
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Unentangledversus entangledsupramolecular 
building bocks 

+ metal
+ metal

G(t)

Viscoelastic 
building blocks

t

G(t)
Elastic reversible network

Liquid-like behavior

- Short blocks
- Polymer solution

Rubbery plateau and relaxation 
time:

Depend on both supramolecular 
dynamics and chain architecture

t

Elastic reversible network
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Dynamics of sticky entangled polymer melts 

Two elastic plateaus Slow decrease of G’

X: sticker

: entanglement



Hydrolysis

Basic environment

PnBA: Poly (n-butyl acrylate)

Mw=210kg/mol

Hydrolyzed PnBApolymers

21

Two elastic 
plateaus

Goldansaz et al., Macromol. 2016.
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Hydrolyzed PnBApolymers
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- The second plateau disappears with increasing T
- Thermo-rheological complexity governed by the association dynamics

Lifetime (sticker) > Lifetime (entanglement)



Acrylic acid aggregates,

Star-like molecules

dangling ends of trapped chains

“test” chain

Free linear chains

Trapped chains

Only the trapped chains cannot relax

Trapped segments versus dangling ends:

23
Hawke et al., JOR 2016

pst, the probability to find an 
associated sticker
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Comparison to experimental data
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Comparison to experimental data

Exponential decay of pst: Delay in the first transition: 
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Dynamics of sticky entangled polymer melts 

Two elastic plateaus Slow decrease of G’



Thermoplastic elastomers: TPEs

PTHF PTHF PTHFT4T T4T

Connected with 
supramolecular bonds (H bond 

type) and by crystallization

A = soft block
B = hard block 
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Samples: A. Sharma, W. Appel, DSM (Geleen, The Netherlands)

The stickers can dissociate and associate again
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Accounting for sticky groups in tube model
Assumptions:

- Statistical distribution of the stickers

- A sticker can be associated, or not: pst

- Fluctuations process of a segment x only takes place if there 
is no active sticker between the chain extremity and x   

X
X

X

X

X

X
X

X: active sticker
X: unassociated 
sticker

This segment cannot 
relax by CLF

X
X

X

X

X

X
X

X: active sticker
X: unassociated 
sticker

This segment can 
relax by CLF
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Penalty on the time during which a chain is relaxing



- psticker = 7.7/1000  (active or not)

- Flory distribution with Mn=25.2 kg/mol

- pst = prob (a sticker is active)

Input data:
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Accounting for sticky groups in tube model
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Conclusions

- By using statistical tool, we can often have a good representation of 
branched or sticky polymers.

- The rheological behavior of sticky entangled polymers strongly 
depends on the balance between association and entanglement 
dynamics.

- Based on tube models, one can rationalize their relaxation process.

- (Rheology + model) gives us a powerful characterization tool.
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t

Assumptions:

- After a time t, a sticker was free during

This assumption is valid only at long times

- pfree = prob (a sticker is not active)
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