Rheology of complex macromolecules: Relating their composition to their viscoelastic properties

Evelyne van Ruymbeke

Bio and Soft Matter

Université catholique de Louvain, Belgium

May 18, Gent

Structure - LVE relationship for complex polymers:

Tube model – At the mesoscopic scale

Tube-based model for predicting the LVE of complex polymer melts

Doi & Edwards (1967), de Gennes (1971)

Tube picture

Doi & Edwards (1967), de Gennes (1971)

Diffusion process along the curvilinear axis of the tube

6

7

The polymer fraction already relaxed = solvent

Dynamic tube dilation:

Speeds up the polymer relaxation

Inter-relationship between all the relaxation mechanisms

Structure - LVE relationship for complex polymers:

Structure - LVE relationship for complex polymers:

E. van Ruymbeke, R. Keunings, C. Bailly, J.N.N.F.M., 2005
E. van Ruymbeke, C. Bailly, R. Keunings, D. Vlassopoulos, Macromolecules, 2006.
M. Ahmadi, C. Bailly, R. Keunings, M. Nekoomanesh, E. van Ruymbeke, Macromolecules, 2011

16

Objectives

Unentangled versus entangled supramolecular building bocks

Unentangled versus entangled supramolecular building bocks

Dynamics of sticky entangled polymer melts

Hydrolyzed PnBA polymers

Hydrolyzed PnBA polymers

Temperature effect: 10 5°C 10⁶ **10**⁵ G',G'' (0) 10⁵ G', G" (Pa) **10⁴** ·G' 10 ····· G" 10³ 105 °C 10 10⁰ 10² 10⁴ 10⁶ 10-2 10⁻³ 10⁻¹ 10² 10³ 10° 10¹ ω (rad/s) $a_T \omega$

- The second plateau disappears with increasing T
- Thermo-rheological complexity \rightarrow governed by the association dynamics

Lifetime (sticker) > Lifetime (entanglement)

Trapped segments versus dangling ends:

Molecular picture: related rheology

Comparison to experimental data

Comparison to experimental data

Dynamics of sticky entangled polymer melts

Thermoplastic elastomers: TPEs

Samples: A. Sharma, W. Appel, DSM (Geleen, The Netherlands)

Flory distribution – TPE 5% HB

Accounting for sticky groups in tube model

Assumptions:

- Statistical distribution of the stickers
- A sticker can be associated, or not: p_{st}
- Fluctuations process of a segment x only takes place if there is no active sticker between the chain extremity and x

Penalty on the time during which a chain is relaxing

Accounting for sticky groups in tube model

Input data:

- Flory distribution with Mn=25.2 kg/mol
- $-p_{sticker} = 7.7/1000$ (active or not)
- $-p_{st} = prob$ (a sticker is active)

Tube model parameters: $G_{N, pure} = 2.5 MPa$ $M_{e, pure} = 1750 \text{ g/mol}$ $\tau_{e, pure} = 10^{-5} \text{ s}$

Conclusions

- By using **statistical tool**, we can often have a good representation of branched or sticky polymers.
- The rheological behavior of **sticky entangled polymers** strongly depends on the balance between association and entanglement dynamics.
- Based on tube models, one can rationalize their relaxation process.
- (Rheology + model) gives us a powerful **characterization tool**.

Acknowledgment

UCL colleagues: Quentin Voleppe Ashinikumar Sharma Hadi Goldansaz Laurence Hawke Charles-André Fustin Jean Francois Gohy Christian Bailly

Collaborators:

Dimitris Vlassopoulos (FORTH, Heraklion) Nikos Hadjichristidis (KAUST) Hiroshi Watanabe (Univ. of Kyoto) Salvatore Coppola (Polymeri Europa, Bologna) Paul Steeman, Han Slot, W. Appel (DSM, Geleen) Taihyun Chang (Corea)

This work has been supported by the F.N.R.S. – Communauté Francaise de Belgique.

Thank you!

Association dynamics of the stickers:

Assumptions:

- p_{free} = prob (a sticker is not active)
- After a time t, a sticker was free during $\Delta t = p_{free}^{(1)}$. t

This assumption is valid only at long times