Nuclear Structure Studies with Radioactive Ion Beams

Riccardo Raabe

KU Leuven, Instituut voor Kern- en Stralingsfysica

Riccardo Raabe (KU Leuven)

Transfer **OOOO**

O Outlook/SummaryOOO Bri

The nuclear landscape

Riccardo Raabe (KU Leuven)

Gent 18/05/2016

KU LEUVEN

KU LEUVEN

Riccardo Raabe (KU Leuven)

Introduction **ΦΦΟΟ** ⁶⁸Ni**ΟΟΟ** β-decay **ΟΟΟΟ**

Transfer **OOOO**

O Outlook/SummaryOOO

Shape coexistence

- States characterised by different shapes appear at low excitation energy
- Example: n-deficient Pb region
 ¹⁸⁶Pb triple-shape coexistence
 Hg nuclei: "parabolic intrusion" at mid-shell

Data: NNDC, figure courtesy of L. Gaffney Original figure in R. Julin et al., J. Phys. G 27 (2001) R109

Gent 18/05/2016

Bri/

0+------

Riccardo Raabe (KU Leuven)

Gent 18/05/2016

KU LEUVEN

⁶⁸NiOOO

β-decay OOOO

Transfer **OOOO**

Outlook/SummaryOOO Brix

Gent 18/05/2016

ISOLDE at CERN

- 1.4 GeV protons fragmentation + spallation + fission
- The largest range of radioactive ion beams in the world

⁶⁸NiOOO β-deca

β-decay OOOO

Transfer **OOOO**

) Outlook/SummaryOOO BriX

BriX

ISOLDE at CERN

- 1.4 GeV protons fragmentation + spallation + fission
- The largest range of radioactive ion beams in the world

Riccardo Raabe (KU Leuven)

⁶⁸NiOOO β-dec

β-decay OOOO

Transfer **OOOO**

O Outlook/SummaryOOO Brix

BriX

Clover detectors

ISOLDE at **CERN**

- 1.4 GeV protons
 fragmentation + spallation + fission
- The largest range of radioactive ion beams in the world

β-decay OOOO

Transfer **OOOO**

Outlook/SummaryOOO BriX

ISOLDE at **CERN**

- 1.4 GeV protons
 fragmentation + spallation + fission
- The largest range of radioactive ion beams in the world

Clover detectors

Riccardo Raabe (KU Leuven)

⁶⁸NiOOO

β-decay OOOO

Transfer **OOOO**

Outlook/SummaryOOO BriX

ISOLDE at CERN

- 1.4 GeV protons fragmentation + spallation + fission
- The largest range of radioactive ion beams in the world

Riccardo Raabe (KU Leuven)

⁶⁸Ni**ΘOO**β-de

β-decay OOOO

Transfer **OOOO**

Outlook/SummaryOOO Bri

What do we know about ⁶⁸Ni

Recent experimental work

- J. Elseviers et al., submitted
- F. Flavigny et al., PRC 91 (2015) 034310
- S. Suchyta et al., PRC 89 (2013) 021301R
- F. Recchia et al., PRC 88 (2013) 041302R
- R. Broda et al., PRC 86 (2012) 064312
- C. J. Chiara et al., PRC 86 (2012) 041304R
- A. Dijon et al., PRC 85 (2012) 031301R

Crucial information

- Precise measurement of 0⁺₂ energy Since 1982: 1770(30) keV from ⁷⁰Zn(¹⁴C,¹⁶O)⁶⁸Ni Now: 1603.5(3) keV
- Two transitions feeding 0⁺₂ (1139 and 2420 keV)
- Firm assignment of several spin/parities

Level scheme from F. Recchia et al. PRC 88 (2013) 041302R

KU LEUVEN

β-decay OOOO Transfer **OOOO**

Outlook/SummaryOOO BriX

Monte-Carlo Shell-Model calculations

Y. Tsunoda et al., PRC 89 (2014) 031301R

• Full $pf + g_{9/2} + d_{5/2}$ for both neutrons and protons

Riccardo Raabe (KU Leuven)

⁶⁸Ni**OOO**

β-decay OOOO

Transfer **OOOO**

Outlook/SummaryOOO Brix

Aiming at complete spectroscopy

IS467

- Revised decay scheme
- β-γ-E0 coincidences
- 2⁺ to 0⁺ connections
- Exp. B(E2) ratios

⁶⁸Ni

Riccardo Raabe (KU Leuven)

Outlook/SummaryOOO Bri Transfer **OOOO** Introduction ⁶⁸Ni**OO** β-decay OOOO Aiming at complete spectroscopy **IS504** PhD thesis J. Elseviers Nature of 0+ states in ⁶⁸Ni β-γ-E0 coincidences

Conf. mixing of 0^{+}_{1} and 0^{+}_{2}

IS467 PRC 91 (2015) 034310

- Revised decay scheme
- 2⁺ to 0⁺ connections
- Exp. B(E2) ratios

⁶⁸Ni

Riccardo Raabe (KU Leuven)

⁶⁸Ni**ΘΘ** β-decay

β-decay OOO

Transfer OOOO Outlook/Sur

Outlook/SummaryOOO BriX

IS467: from ⁶⁸Mn to ⁶⁸Ni

F. Flavigny et al., PRC 91 (2015) 034310

- Pure Mn source (RILIS)
- Implantation 69 ms decay 2.2 s
- β-γ detection setup
- In ⁶⁸Co: 2 isomers
 7⁻ T_{1/2} = 0.23(3) s
 (1⁺,3⁺) T_{1/2} = 1.6(3) s

- MINIBALL: 5.8% photo-peak efficiency at 1.332 MeV
- 3 plastic detectors: 50% beta efficiency
- Polyethylene-borax-lead-brass shielding

KU LEUVEN

⁶⁸Ni **Φ** β-decay **ΦΟ**Ο

Transfer **OOOO**

Outlook/SummaryOOO Bri

β-γ coincidences

F. Flavigny et al., PRC 91 (2015) 034310

- Low background (shielding)
- Laser ionisation (RILIS)
- Mass separation (HRS)
- Time condition: $t_{\beta} t_{PP}$ in [350,2200] ms

→ Clean ⁶⁸Co low-spin spectrum

KU LEUVEN

⁶⁸Ni

Transfer **OOOO**

Outlook/SummaryOOO

Bri

KU LEUVEN

Feeding of 0^+_2 state in ${}^{68}Ni : \beta - \gamma - E0$ coincidences

F. Flavigny et al., PRC 91 (2015) 034310

10 5 0 0 200 400 600 800 1000 1200 1400 Energy (keV)

Riccardo Raabe (KU Leuven)

Gent 18/05/2016

with recent results

Transfer **OOO**

O Outlook/SummaryOOO Brix

IS504: ⁶⁶Ni(t,p) at REX-ISOLDE

⁶⁸Ni**OO**

PhD of Jytte Elseviers (KU Leuven)

T-ReX

V. Bildstein et al, EPJA 48 (2012) 85

- Resolution ≈1-6 deg
- ΔE -E for PID
- ε ≈ 60%

Miniball

N. Warr et al, EPJA 49 (2013) 40

- 24 HPGe
- 6-fold segmented
- ε ≈ 8% @ 1.3 MeV

Gent 18/05/2016

KU LEUVEN

PhD of Jytte Elseviers (KU Leuven)

γ 's and coincidences

⁶⁸Ni**OO**

Few γ's to ground state

Νo p-γ-γ coincidences

KU LEUVEN

Riccardo Raabe (KU Leuven)

Population of 0⁺ states

⁶⁸Ni

PhD of Jytte Elseviers (KU Leuven)

Riccardo Raabe (KU Leuven)

⁶⁸Ni**ΦΦΦ** β-decay

β-decay

Lasers

Transfer

Outlook/Summary OO Bri

Outlook I - HELIOS

In-jet laser spectroscopy

 Strong reduction of broadening effects
 → improved resolution

→ improved resolution
Proof-of-principle: ²¹⁵Ac at LISOL

- New dedicated laser facility at the IKS, KU Leuven Towards the heaviest elements
- To be installed at SPIRAL2 in GANIL, France

Riccardo Raabe (KU Leuven)

Advanced Grant Piet Van Duppen

90°-bent

RFQ

pumping

barrier

Acceleration

region

Transfer

Outlook II - SpecMAT

Transfer reactions with very weak beams

- Active target: Time-projection chamber where detection gas is the target
- Magnetic field parallel to beam direction to confine emitted particles
- Array of γ-ray detectors within the field LaBr3 preferred for best compromise efficiency/resolution
 - High luminosity
 - Large dynamic range
 - High resolution
 - Versatile

Riccardo Raabe (KU Leuven)

Consolidator Grant RR

Transfer

Outlook/Summary

Gent 18/05/2016

Summary

Introduction

- Study of nuclei far from stability reveals details of the underlying nucleon-nucleon interaction
- Link collective properties (deformation) with single-particle structure
- Use all spectroscopic probes available Nuclear reactions are becoming available at present and forthcoming facilities
- First results in Ni region
 Pb region is the next step
- Strong support from (and to) theory is necessary

KU LEUVEN

Characterization of the low-lying 0^+ and 2^+ states in ⁶⁸Ni via β decay of the low-spin ⁶⁸Co isomer

F. Flavigny,^{1,*} D. Pauwels,¹ D. Radulov,¹ I. J. Darby,¹ H. De Witte,¹ J. Diriken,^{1,2} D. V. Fedorov,³ V. N. Fedosseev,⁴ L. M. Fraile,⁵ M. Huyse,¹ V. S. Ivanov,³ U. Köster,⁶ B. A. Marsh,⁴ T. Otsuka,^{7,8} L. Popescu,² R. Raabe,¹ M. D. Seliverstov,^{1,3,9} N. Shimizu,⁷ A. M. Sjödin,⁴ Y. Tsunoda,⁸ P. Van den Bergh,¹ P. Van Duppen,¹ J. Van de Walle,¹⁰ M. Venhart,^{1,11} W. B. Walters,¹² and K. Wimmer^{8,13} ¹KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, 3001 Leuven, Belgium ²Belgian Nuclear Research Centre SCKCEN, Boeretang 200, B-2400 Mol, Belgium ³Petersburg Nuclear Physics Institute, NRC Kurchatov Institute, 188300 Gatchina, Russia **IS467** ⁴EN Department, CERN, CH-1211 Geneva 23, Switzerland ⁵Grupo de Física Nuclear, Universidad Complutense, CEI Moncloa, 28040 Madrid, Spain ⁶Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Grenoble, France ⁷Center for Nuclear Study, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan ⁸Department of Physics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan ⁹Department of Physics, University of York, York YO10 5DD, United Kingdom ¹⁰PH Department, CERN, CH-1211 Geneva 23, Switzerland ¹¹Institute of Physics, Slovak Academy of Sciences, SK-84511 Bratislava, Slovakia ¹²Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA ¹³Physik Department E12, Technische Universitat Munchen, D-85748 Garching, Germany

KU LEUVEN

Probing the 0⁺ States in ⁶⁸Ni via the two-Neutron Transfer Reaction ⁶⁶Ni(t,p)

KU LEUVEN

.....

Other slides

Riccardo Raabe (KU Leuven)

β-decay

Transfer

Outlook/Summary OOO

Bri/

Type-II shell evolution

T. Otsuka and Y. Tsunoda, JPG 43 (2016) 024009

- Type-I shell evolution: number of nucleons in different isotopes
- Type-II shell evolution: occupancies within the same nucleus

- From Ni to n-deficient Pb region... we need information on energy gaps!
 - → nucleon-transfer measurements

Transfer **OOOO**

Outlook/SummaryOOO Bri

What do we know about ⁶⁸Ni

- ⁶⁸Ni: High E(2⁺₁), low B(E2,2⁺ \rightarrow 0⁺)
- No signature of shell closure from S_{2n}
- In fact, rather weak N = 40 gap

KU LEUVEN

⁶⁸ 6⁶⁸ 6⁶⁸ β-decay 0000

Transfer **OOOO**

O Outlook/SummaryOOO

Large-scale Shell-Model calculations

LNPS interaction S. Lenzi et al., PRC 82 (2010) 054301

- ⁴⁸Ca core, π pf v pfg_{9/2}d_{5/2} to describe Fe and Cr
- Evolution of the neutron single particle states: ESPE difference g_{9/2}-d_{5/2} at ⁶⁸Ni: ≈1.6 MeV (N=50 gap size)

"dominant proton configuration has exactly two f7/2 protons less than the ground state"

Bri

"The 0_{1}^{+} and 0_{2}^{+} states "are characterized by "similar proton occupancies with leading 0p-0h (neutron) configuration for the 0_{1}^{+} ground state and 2p-2h (neutron) configurations for the 0_{2}^{+} ."

KU LEUVEN

Riccardo Raabe (KU Leuven)

Introduction

Transfer **OOOO**

O Outlook/SummaryOOO BriX

ISOLDE

KU LEUVEN

O Transf OCOO

Outlook/SummaryOOO Bri

F. Flavigny et al., PRC 91 (2015) 034310

Revised decay scheme

New:

- 710 keV intensity (clean, no high spin)
- 1139 and 2421 keV placement
- Removed 694 keV (after β-delayed n)

Gent 18/05/2016

- 814 keV intensity 5⁻ isomer
- $I_{rel}(0^+_2 \rightarrow 0^+_1) = 19(8) \%$

• Upper limits:

•
$$I_{rel}(0_3^+ \rightarrow 0_2^+) < 2(1)\%$$

•
$$I_{rel}(0^+_3 \rightarrow 0^+_2) = < 4(1)\%$$

•
$$I_{rel}(0^+_3 \rightarrow 0^+_1)$$

KU LEUVEN

Riccardo Raabe (KU Leuven)

⁶⁸N**EIEIE**) β-deca

Transf **OBOD**

Outlook/Jummary000 Bri

Particle spectra

PhD of Jytte Elseviers (Ket Leuven)

KU LEUVEN

Introduction OOOOO

3000

2500

2000

1500

1000

500

0

174

Energy [keV]

10⁺9 12

 8^{+}

 6^+

⁶⁸NCCOOO β-decay OOOO

OOO Tra

counts / 1 keV

206

Transfer OOOO Outl

Outlook/SummaryOOO

Bri

Coulex ¹⁸²⁻¹⁸⁸Hg

- Coulomb excitation: nature of quadrupole deformation mixing of states with different structure
- Clarify those Hg isotopes: No mixing between 0⁺ states Mixing of 2⁺ states (E0 strengths)
- ¹⁸²⁻¹⁸⁸Hg at REX-ISOLDE (PhD thesis N. Bree)

190

194

Mass number A

198

202

Riccardo Raabe (KU Leuven)

178

182

186

Outlook/SummaryOOO

Shape coexistence in n-deficient Pb region

- Radii Hg:
 Thomas Day Goodacre, later this evening
- Coulex: → Kasia Wrzosek-Lipska, Friday evening
 - ¹⁸²⁻¹⁸⁸Hg: N. Bree, PRL 112, 162701 (2014)

0⁺₁ slightly oblate

Gent 18/05/2016

- 0⁺₂ more deformed (prolate?)
- The 2⁺ changes character!
- Small mixing in the g.s. keeps
 E(2⁺) and B(E2) constant

KU LEUVEN

Bri/

Transfer 0000 Outlook/Summary000 BriX

Measurements: ISOLDE @ CERN

Riccardo Raabe (KU Leuven)

K. Sieja & F. Nowacki, PRC 85 (2012) 051301(R)

KU LEUVEN

Transfer **OOOO**

00 Outlook/Summary000 Bri

BriX

KU LEUVEN

Shell evolution and deformation

PHYSICAL REVIEW C 89, 031301(R) (2014)

Novel shape evolution in exotic Ni isotopes and configuration-dependent shell structure

Yusuke Tsunoda,¹ Takaharu Otsuka,^{1,2,3} Noritaka Shimizu,² Michio Honma,⁴ and Yutaka Utsuno⁵
 ¹Department of Physics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
 ²Center for Nuclear Study, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
 ³National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
 ⁴Center for Mathematical Sciences, University of Aizu, Ikki-machi, Aizu-Wakamatsu, Fukushima 965-8580, Japan
 ⁵Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
 (Received 19 September 2013; revised manuscript received 25 November 2013; published 17 March 2014)

"Type II" shell evolution

- Deformation can induce changes in occupancy...
- which, through the tensor interaction, modifies the gaps between shells

Shape coexistence and nature of 0⁺ states

K. Heyde & J. Wood , Rev. Mod. Phys. 83 (2011) 1467