Beyond integrability for collective pairing systems

Stijn De Baerdemacker^{1,2}

¹Department of Physics and Astronomy, Ghent University, Belgium

²Center for Molecular Modelling, Ghent University, Belgium

General Scientific Meeting 2016 of the Belgian Physical Society Gent, May 18, 2016

bps 1 / 30

000000	000000	000000	000

The collaboration

- Dimitri Van Neck, Pieter Claeys (Poster 37) (Department of Physics & Astronomy, Ghent University)
- Patrick Bultinck, Mario Van Raemdonck (Department of Inorganic and Physical Chemistry, Ghent University)
- Paul Johnson, Peter Limacher, Paul Ayers, Katharina Boguslawski, PavełTecmer, Michael Richer (Department of Chemistry, McMaster University)
- Jean-Sébastien Caux, Rianne van den Berg (Institute for Theoretical Physics, University of Amsterdam)

・ロン ・四 と ・ ヨン ・ ヨン

1 Pairing

- The quantum many-body problem
- Pairing

2 Integrability

- Richardson
- for Sn isotopes
- Gaudin

3 ...& beyond

- The quantum many-body problem revisited
- Richardson-Gaudin basis
- inspired by integrability

4 Outlook and conclusions

- Conclusions
- Acknowledgments

pairing		
• 00 0000		

Theory

The mission of a quantum many-body theorist

1 Construct the *A*-body Hamiltonian

$$\hat{H} = \sum_{i=1}^{A} -\frac{\hbar^2}{2m_i} \nabla_i^2 + \sum_{i < j} V_2(r_i, r_j) + \sum_{i < j < k} V_3(r_i, r_j, r_k) + \dots$$

2 and solve the A-body Schrödinger equation

$$\langle r_1, r_2, \ldots, r_A | \hat{H} | \Psi \rangle = E \langle r_1, r_2, \ldots, r_A | \Psi \rangle$$

Configuration Interaction (CI)

Bound systems can be embedded within a mean field

$$\hat{H} = \sum_{i=1}^{N} [\hat{T}_i + V_m(r_i)] + [\sum_{i < j}^{N} V(r_i, r_j) - \sum_{i=1}^{N} V_m(r_i)] = \sum_{i=1}^{N} \hat{H}_i + \sum_{i < j}^{N} V_{res}(r_i, r_j)$$

The Hilbert space is spanned by all possible single-particle Slater determinants
 Desidual interactions are tracted in a stinu values.

Residual interactions are treated in active valence space

Dimensions of the CI

イロト イヨト イヨト イヨト э 6 / 30 bps

pairing			
000000	000000	000000	000

More is different

Energy of excited states

- Spikes at magic numbers (N, Z) = {8, 20, 28, 50, 82, ...} reminiscent of electronic shell structure
- Signatures of collective behaviour: (rigid) rotational and (soft) vibrational spectra.

pairing		
0000000		

Pairing for spherical nuclei

The interaction can be developed in a total angular momentum J expansion

$$\hat{H} = \sum_{a} \varepsilon_{a} \hat{n}_{a} + \frac{1}{4} \sum_{J} \sum_{abcd} \langle ab, JM | V | cd, JM \rangle [a_{j_{a}}^{\dagger} a_{j_{b}}^{\dagger}]^{(J)} \cdot [\tilde{a}_{j_{c}} \tilde{a}_{j_{d}}]^{(J)}$$

pairing	integrability	
0000000		

Hierarchy by Seniority

• Hamiltonian can be reordered wrt seniority (v = 0, 2, 4)

$$H = \sum_{i} \varepsilon_{i} a_{i}^{\dagger} a_{i} + \sum_{ik}^{v=0} V_{iikk} a_{i}^{\dagger} a_{\bar{i}}^{\dagger} \tilde{a}_{k} \tilde{a}_{\bar{k}} + \sum_{i \neq j,k}^{v=2} V_{ijkk} (a_{i}^{\dagger} a_{j}^{\dagger} \tilde{a}_{k} \tilde{a}_{\bar{k}} + h.c.) + \dots$$

• seniority : number of particles *not* coupled pairwize together • $\{S_i^{\dagger}, S_i, S_i^0\} = \{a_i^{\dagger} a_{\bar{i}}^{\dagger}, \tilde{a}_i \tilde{a}_{\bar{i}}, \frac{1}{2}(n_i + n_{\bar{i}} - 1)\}$ span su(2) quasi-spin algebra

	0p-0h	1p-1h	2p-2h	3p-3h	4p-4h
v=0					
v=2					
v=4					

pairing	integrability	& beyond	conclusions
	000000	0000000	000

Geminals

geminal states

• "mean field" for pairing
$$|\text{APG}
angle = \prod_{\alpha=1}^{N} \sum_{i=1}^{m} G_{\alpha i} S_{i}^{\dagger} |\theta
angle$$

- overlap with slater states
 (Slater|APG) = Per(G)
- factorial scaling

tractable geminals

• APSG $\prod_{\alpha=1}^{N} \sum_{i=1}^{m} O_{\alpha i} S_{i}^{\dagger} |\theta\rangle$

AP1roG

$$\prod_{lpha=1}^{N}\left(S_{lpha}^{\dagger}+\sum_{i=N+1}^{m}G_{lpha i}S_{i}^{\dagger}
ight)\left| heta
ight
angle$$

Richardson-Gaudin

integrability	

1 Pairing

The quantum many-body problem

Pairing

2 Integrability

- Richardson
- for Sn isotopes
- Gaudin

3 ...& beyond

- The quantum many-body problem revisited
- Richardson-Gaudin basis
- inspired by integrability

4 Outlook and conclusions

- Conclusions
- Acknowledgments

- 4 回 ト 4 回 ト 4 回 ト

integrability	

Richardson's solution for the pairing problem

The reduced BCS model is exactly solvable

$$H = \sum_{i=1}^{m} \varepsilon_i n_i + g \sum_{ij=1}^{m} S_i^{\dagger} S_j$$

by means of a Bethe Ansatz product wavefunction

$$|\psi
angle = \prod_{lpha=1}^{N} S_{lpha}^{\dagger} | heta
angle$$
 with $S_{lpha}^{\dagger} = \sum_{i} \frac{S_{i}^{\dagger}}{2\varepsilon_{i} - x_{lpha}}$

• provided the parameters x_{α} fullfill the

Richardson-Gaudin (RG) equations

$$1+2g\sum_{i=1}^{k}\frac{d_{i}}{2\varepsilon_{i}-x_{\alpha}}-2g\sum_{\beta\neq\alpha}^{N}\frac{1}{x_{\beta}-x_{\alpha}}=0 \qquad (\forall \alpha=1\dots N)$$

ps 12 / 30

イロト 不得下 イヨト イヨト

	integrability		
000000	●○ ○○○○	000000	000

Richardson product state

$$|\psi
angle = \prod_{\alpha=1}^{N} \sum_{i=1}^{m} \frac{S_{i}^{\dagger}}{2\varepsilon_{i} - \mathbf{x}_{\alpha}} |\theta
angle$$

• Neutron superfluidity in Sn woods-saxon ε_j $g = -2.5 \text{MeV}/\sqrt{A}$

Level (i)	(Ω_i)	Energy (ε_i)
$2d_{5/2}$	6	-11.1639
$1g_{7/2}$	8	-10.2748
$3s_{1/2}$	2	-9.1240
$2d_{3/2}$	4	-8.7656
$1h_{11/2}$	12	-7.7540

	integrability		
000000	●○ ○○○○	000000	000

Richardson product state

$$|\psi
angle = \prod_{\alpha=1}^{N} \sum_{i=1}^{m} \frac{S_{i}^{\dagger}}{2\varepsilon_{i} - \mathbf{x}_{\alpha}} |\theta
angle$$

• Neutron superfluidity in Sn woods-saxon ε_j $g = -2.5 \text{MeV}/\sqrt{A}$

Level (i)	(Ω_i)	Energy (ε_i)
$2d_{5/2}$	6	-11.1639
$1g_{7/2}$	8	-10.2748
$3s_{1/2}$	2	-9.1240
$2d_{3/2}$	4	-8.7656
$1h_{11/2}$	12	-7.7540

イロト 不得下 イヨト イヨト

	integrability		
000000	●○ ○○○○	000000	000

Richardson product state

$$|\psi
angle = \prod_{lpha=1}^{N} \sum_{i=1}^{m} \frac{S_{i}^{\dagger}}{2\varepsilon_{i} - \mathbf{x}_{lpha}} | heta
angle$$

• Neutron superfluidity in Sn woods-saxon ε_j $g = -2.5 \text{MeV}/\sqrt{A}$

Level (i)	(Ω_i)	Energy (ε_i)
$2d_{5/2}$	6	-11.1639
$1g_{7/2}$	8	-10.2748
$3s_{1/2}$	2	-9.1240
$2d_{3/2}$	4	-8.7656
$1h_{11/2}$	12	-7.7540

	integrability		
000000	●○ ○○○○	000000	000

Richardson product state

$$|\psi
angle = \prod_{\alpha=1}^{N} \sum_{i=1}^{m} \frac{S_{i}^{\dagger}}{2\varepsilon_{i} - \mathbf{x}_{\alpha}} |\theta
angle$$

• Neutron superfluidity in Sn woods-saxon ε_j $g = -2.5 \text{MeV}/\sqrt{A}$

Level (i)	(Ω_i)	Energy (ε_i)
$2d_{5/2}$	6	-11.1639
$1g_{7/2}$	8	-10.2748
$3s_{1/2}$	2	-9.1240
$2d_{3/2}$	4	-8.7656
$1h_{11/2}$	12	-7.7540

	integrability		
000000	●○ ○○○○	000000	000

Richardson product state

$$|\psi
angle = \prod_{\alpha=1}^{N} \sum_{i=1}^{m} \frac{S_{i}^{\dagger}}{2\varepsilon_{i} - \mathbf{x}_{\alpha}} |\theta
angle$$

• Neutron superfluidity in Sn woods-saxon ε_j $g = -2.5 \text{MeV}/\sqrt{A}$

Level (i)	(Ω_i)	Energy (ε_i)
$2d_{5/2}$	6	-11.1639
$1g_{7/2}$	8	-10.2748
$3s_{1/2}$	2	-9.1240
$2d_{3/2}$	4	-8.7656
$1h_{11/2}$	12	-7.7540

イロト 不得下 イヨト イヨト

	integrability		
000000	●○ ○○○○	000000	000

Richardson product state

$$|\psi
angle = \prod_{\alpha=1}^{N} \sum_{i=1}^{m} \frac{S_{i}^{\dagger}}{2\varepsilon_{i} - \mathbf{x}_{\alpha}} |\theta
angle$$

• Neutron superfluidity in Sn woods-saxon ε_j $g = -2.5 \text{MeV}/\sqrt{A}$

Level (i)	(Ω_i)	Energy (ε_i)
$2d_{5/2}$	6	-11.1639
$1g_{7/2}$	8	-10.2748
$3s_{1/2}$	2	-9.1240
$2d_{3/2}$	4	-8.7656
$1h_{11/2}$	12	-7.7540

	integrability		
000000	●○ ○○○○	000000	000

Richardson product state

$$|\psi
angle = \prod_{\alpha=1}^{N} \sum_{i=1}^{m} \frac{S_{i}^{\dagger}}{2\varepsilon_{i} - \mathbf{x}_{\alpha}} |\theta
angle$$

• Neutron superfluidity in Sn woods-saxon ε_j $g = -2.5 \text{MeV}/\sqrt{A}$

Level (i)	(Ω_i)	Energy (ε_i)
$2d_{5/2}$	6	-11.1639
$1g_{7/2}$	8	-10.2748
$3s_{1/2}$	2	-9.1240
$2d_{3/2}$	4	-8.7656
$1h_{11/2}$	12	-7.7540

	integrability		
000000	●○ ○○○○	000000	000

Richardson product state

$$|\psi
angle = \prod_{\alpha=1}^{N} \sum_{i=1}^{m} \frac{S_{i}^{\dagger}}{2\varepsilon_{i} - \mathbf{x}_{\alpha}} |\theta
angle$$

• Neutron superfluidity in Sn woods-saxon ε_j $g = -2.5 \text{MeV}/\sqrt{A}$

Level (i)	(Ω_i)	Energy (ε_i)
$2d_{5/2}$	6	-11.1639
$1g_{7/2}$	8	-10.2748
$3s_{1/2}$	2	-9.1240
$2d_{3/2}$	4	-8.7656
$1h_{11/2}$	12	-7.7540

	integrability		
000000	●○ ○○○○	000000	000

Richardson product state

$$|\psi
angle = \prod_{m{lpha}=1}^{N}\sum_{i=1}^{m}rac{S_{i}^{\dagger}}{2arepsilon_{i}-\mathbf{x}_{m{lpha}}}| heta
angle$$

• Neutron superfluidity in Sn woods-saxon ε_j $g = -2.5 \text{MeV}/\sqrt{A}$

Level (i)	(Ω_i)	Energy (ε_i)
$2d_{5/2}$	6	-11.1639
$1g_{7/2}$	8	-10.2748
$3s_{1/2}$	2	-9.1240
$2d_{3/2}$	4	-8.7656
$1h_{11/2}$	12	-7.7540

	integrability		
000000	●○ ○○○○	000000	000

Richardson product state

$$|\psi
angle = \prod_{\alpha=1}^{N} \sum_{i=1}^{m} \frac{S_{i}^{\dagger}}{2\varepsilon_{i} - \mathbf{x}_{\alpha}} |\theta
angle$$

• Neutron superfluidity in Sn woods-saxon ε_j $g = -2.5 \text{MeV}/\sqrt{A}$

Level (i)	(Ω_i)	Energy (ε_i)
$2d_{5/2}$	6	-11.1639
$1g_{7/2}$	8	-10.2748
$3s_{1/2}$	2	-9.1240
$2d_{3/2}$	4	-8.7656
$1h_{11/2}$	12	-7.7540

	integrability		
000000	●○ ○○○○	000000	000

Richardson product state

$$|\psi
angle = \prod_{\alpha=1}^{N} \sum_{i=1}^{m} \frac{S_{i}^{\dagger}}{2\varepsilon_{i} - \mathbf{x}_{\alpha}} |\theta
angle$$

• Neutron superfluidity in Sn woods-saxon ε_j $g = -2.5 \text{MeV}/\sqrt{A}$

Level (i)	(Ω_i)	Energy (ε_i)
$2d_{5/2}$	6	-11.1639
$1g_{7/2}$	8	-10.2748
$3s_{1/2}$	2	-9.1240
$2d_{3/2}$	4	-8.7656
$1h_{11/2}$	12	-7.7540

	integrability		
000000	●○ ○○○○	000000	000

Richardson product state

$$|\psi
angle = \prod_{\alpha=1}^{N} \sum_{i=1}^{m} \frac{S_{i}^{\dagger}}{2\varepsilon_{i} - \mathbf{x}_{\alpha}} |\theta
angle$$

• Neutron superfluidity in Sn woods-saxon ε_j $g = -2.5 \text{MeV}/\sqrt{A}$

Level (i)	(Ω_i)	Energy (ε_i)
$2d_{5/2}$	6	-11.1639
$1g_{7/2}$	8	-10.2748
$3s_{1/2}$	2	-9.1240
$2d_{3/2}$	4	-8.7656
$1h_{11/2}$	12	-7.7540

	integrability		
000000	●○ ○○○○	000000	000

Richardson product state

$$|\psi
angle = \prod_{\alpha=1}^{N} \sum_{i=1}^{m} \frac{S_{i}^{\dagger}}{2\varepsilon_{i} - \mathbf{x}_{\alpha}} |\theta
angle$$

• Neutron superfluidity in Sn woods-saxon ε_j $g = -2.5 \text{MeV}/\sqrt{A}$

Level (i)	(Ω_i)	Energy (ε_i)
$2d_{5/2}$	6	-11.1639
$1g_{7/2}$	8	-10.2748
$3s_{1/2}$	2	-9.1240
$2d_{3/2}$	4	-8.7656
$1h_{11/2}$	12	-7.7540

	integrability		
000000	●○ ○○○○	000000	000

Richardson product state

$$|\psi
angle = \prod_{m{lpha}=1}^{N}\sum_{i=1}^{m}rac{S_{i}^{\dagger}}{2arepsilon_{i}-\mathbf{x}_{m{lpha}}}| heta
angle$$

• Neutron superfluidity in Sn woods-saxon ε_j $g = -2.5 \text{MeV}/\sqrt{A}$

Level (i)	(Ω_i)	Energy (ε_i)
$2d_{5/2}$	6	-11.1639
$1g_{7/2}$	8	-10.2748
$3s_{1/2}$	2	-9.1240
$2d_{3/2}$	4	-8.7656
$1h_{11/2}$	12	-7.7540

	integrability		
000000	●○ ○○○○	000000	000

Richardson product state

$$|\psi
angle = \prod_{m{lpha}=1}^{N}\sum_{i=1}^{m}rac{S_{i}^{\dagger}}{2arepsilon_{i}-\mathbf{x}_{m{lpha}}}| heta
angle$$

• Neutron superfluidity in Sn woods-saxon ε_j $g = -2.5 \text{MeV}/\sqrt{A}$

Level (i)	(Ω_i)	Energy (ε_i)
$2d_{5/2}$	6	-11.1639
$1g_{7/2}$	8	-10.2748
$3s_{1/2}$	2	-9.1240
$2d_{3/2}$	4	-8.7656
$1h_{11/2}$	12	-7.7540

イロト 不得下 イヨト イヨト

	integrability		
000000	●○ ○○○○	000000	000

Richardson product state

$$|\psi
angle = \prod_{m{lpha}=1}^{N}\sum_{i=1}^{m}rac{S_{i}^{\dagger}}{2arepsilon_{i}-\mathbf{x}_{m{lpha}}}| heta
angle$$

• Neutron superfluidity in Sn woods-saxon ε_j $g = -2.5 \text{MeV}/\sqrt{A}$

Level (i)	(Ω_i)	Energy (ε_i)
$2d_{5/2}$	6	-11.1639
$1g_{7/2}$	8	-10.2748
$3s_{1/2}$	2	-9.1240
$2d_{3/2}$	4	-8.7656
$1h_{11/2}$	12	-7.7540

イロト 不得下 イヨト イヨト

	integrability		
000000	00000	000000	000

Separation energies, gaps, ...

stijn de baerdemacker (ugent)

beyond integrability

bps 14 / 30

...& beyond

conclusions

Significance of Richardson's solution

Diagonalisation

- Exact results
- Exponential scaling
- General interaction

Richardson

- Exact results
- Linear scaling
- Integrable systems

BCS

Variational

<ロ> (日) (日) (日) (日) (日)

- Linear scaling
- General interaction

What's the magic?

Integrable system (loose definition)

A system with m degrees of freedom is called integrable if the Hamiltonian can be written as a sum of m mutually commuting operators

$$\hat{H} = \sum_{i=1}^{m} \varepsilon_i \hat{R}_i, \quad \text{with} \quad [\hat{R}_i, \hat{R}_j] = 0, \quad \forall i, j = 1..m$$

Conserved charges of the pairing problem

$$R_i = S_i^0 + \sum_{j \neq i}^m \frac{1}{2} X_{ij} (S_i^{\dagger} S_j + S_i S_j^{\dagger}) + Z_{ij} S_i^0 S_j^0$$

$$X_{ij}X_{jk} + X_{ki}Z_{ij} + X_{ki}Z_{jk} = 0, \quad \forall ijk$$

M. Gaudin, J. Phys. (Paris) 37 1087 (1976)

イロト 不得下 イヨト イヨト

 pairing
 integrability
 ...& beyond
 conclusions

 0000000
 0000000
 0000000
 000

What's the magic?

Conserved charges & XXZ Gaudin algebra

$$R_i = \frac{S_i^0}{2} + \sum_{j \neq i}^m \frac{1}{2} X_{ij} (S_i^{\dagger} S_j + S_i S_j^{\dagger}) + Z_{ij} S_i^0 S_j^0, \quad X_{ij} X_{jk} + X_{ki} Z_{ij} + X_{ki} Z_{jk} = 0$$

rational model (XXX)

reduced BCS (Richardson)

$$X_{ij} = Z_{ij} = \frac{1}{\varepsilon_i - \varepsilon_j}$$

hyperbolic model (XXZ) 🗞

• factorisable interactions $X_{ij} = \frac{\sqrt{\varepsilon_i \varepsilon_j}}{\varepsilon_i - \varepsilon_j}, \quad Z_{ij} = \frac{1}{2} \frac{\varepsilon_i + \varepsilon_j}{\varepsilon_i - \varepsilon_j}$

イロト 不得下 イヨト イヨト 二日

🖾 G. Ortiz, R. Somma, J. Dukelsky & S. Rombouts (2005) Nucl. Phys. B707, 421

S. Rombouts, J. Dukelsky & G. Ortiz (2010) Phys. Rev. B82 224510

🛸 J. Dukelsky, S. Lerma, L. Robledo, R. Rodriguez-Guzman, & S. Rombouts (2011) PRC84, 061301(R)

M. Van Raemdonck, sdb, & D. Van Neck (2014), Phys. Rev. B89, 155136

bps 17 / 30

A gallery of integrable systems

- Nearest-neighbour Heisenberg spin chains for quantum state transfer ∠ H. Bethe, Z. Phys. **71** 205 (1931)
- 1D Fermi-Hubbard model ∠ E. H. Lieb and F. Y. Wu, Phys. Rev. Lett. **20** 1445 (1968)
- Jaynes-Cummings and Dicke Hamiltonians for photon-ion interactions ∠ M. Gaudin, J. Phys. (Paris) **37** 1087 (1976)
- Proton-neutron pairing in the SO(5) isovector and SO(8) isoscalar channel ⁽ⁿ⁾ J. Dukelsky, et. al., Phys. Rev. Lett. 96 072503 (2006)
- Kondo-like impurity model ∠ G. Ortiz, *et. al.* Nucl. Phys. **B707**, 421 (2005)

. . . .

イロト 不得 トイヨト イヨト 二日

integrability	& beyond	

1 Pairing

- The quantum many-body problem
- Pairing

2 Integrability

- Richardson
- for Sn isotopes
- Gaudin

3 ...& beyond

- The quantum many-body problem revisited
- Richardson-Gaudin basis
- inspired by integrability

4 Outlook and conclusions

- Conclusions
- Acknowledgments

integrability	& beyond	
	•••••	

Integrable systems for non-integrable systems

Beyond mean-field correlations are described exactly in integrable systems

$$\hat{H} = \sum_{i=1}^{N} \hat{H}_{i} + \sum_{i < j}^{N} [V_{res}(r_{i}, r_{j}) + V_{int}(r_{i}, r_{j}) - V_{int}(r_{i}, r_{j})] = \hat{H}_{int} + \sum_{i < j}^{N} v_{res}(r_{i}, r_{j})$$

- Use Bethe Ansatz wavefunctions as improved basis over Slater determinants.
- fCI, perturbation theory, Kohn-Sham DFT, projected Schrödinger formalism, coupled cluster...

...

Correlation functions

Geminal states

generalized richardson states

$$|\mathsf{APG}
angle = \prod_{oldsymbol{lpha}=1}^N \sum_{i=1}^m \mathcal{G}_{oldsymbol{lpha}i} \mathcal{S}_i^\dagger | heta
angle$$

- overlap with slater states
 (Slater|APG) = Per(G)
- factorial scaling

Richardson states

special geminal states

$$|\mathsf{RG}
angle = \prod_{lpha=1}^{N}\sum_{i=1}^{m}rac{S_{i}^{\dagger}}{2arepsilon_{i}-x_{lpha}}| heta
angle$$

 overlap with slater states (Borchardt)

 $\langle {\sf Slater} | {\sf RG} \rangle = \frac{{\sf det}({\it RG}*{\it RG})}{{\sf det}({\it RG})^2}$

overlap with off-shell RG states
(Slavnov)

 $\langle \mathsf{off}\mathsf{-}\mathsf{RG}|\mathsf{RG}
angle = \mathsf{det}(\mathsf{Slavnov})$

<ロ> (日) (日) (日) (日) (日)

integrability	& beyond	
	000000	

Richardson-Gaudin states as variational ansatz

non-integrable DOCI Hamiltonian

$$H = \sum_{i=1}^{m} \varepsilon_i n_i + \sum_{ik} V_{ik} S_i^{\dagger} S_k$$

RG as variational ansatz

 $E[\mathbf{g}] = \langle RG(\mathbf{g}) | H | RG(\mathbf{g}) \rangle$

min_g E[g] with integrability constraint

$$1 + \sum_{i=1}^{k} \frac{2\mathbf{g}\mathbf{d}_i}{2\varepsilon_i - \mathbf{x}_\alpha} - \sum_{\beta \neq \alpha}^{N} \frac{2\mathbf{g}}{\mathbf{x}_\beta - \mathbf{x}_\alpha} = \mathbf{0}$$

■ g defines a RG integrable model

example: ¹¹⁶Sn

- realistic DOCI Hamiltonian with G-matrix formalism
- collective pair

イロト 不得下 イヨト イヨト

	& beyond	
	000000	

Richardson-Gaudin bases as optimal active space

non-integrable DOCI Hamiltonian

$$H = \sum_{i=1}^{m} \varepsilon_i n_i + \sum_{ik} V_{ik} S_i^{\dagger} S_k$$

 \blacksquare g defines a RG integrable model

$$H_{\rm int} = \sum_{i=1}^m \varepsilon_i n_i + \mathbf{g} \sum_{ik} S_i^{\dagger} S_k$$

- complete basis set with hierarchy
- diagonalise H in increasing basis set $\{|RG_1\rangle, |RG_2\rangle, |RG_3\rangle, ..., |RG_i\rangle\}$
- correlation coefficients

- quick convergence at optimal
 g = -0.211
- "flat" g = 0 flags collectivity

イロト 不得下 イヨト イヨト

Richardson-Gaudin bases as optimal active space

non-integrable DOCI Hamiltonian

$$H = \sum_{i=1}^{m} \varepsilon_i n_i + \sum_{ik} V_{ik} S_i^{\dagger} S_k$$

 \blacksquare g defines a RG integrable model

$$H_{\rm int} = \sum_{i=1}^m \varepsilon_i n_i + \mathbf{g} \sum_{ik} S_i^{\dagger} S_k$$

- complete basis set with hierarchy
- diagonalise H in increasing basis set $\{|RG_1\rangle, |RG_2\rangle, |RG_3\rangle, ..., |RG_i\rangle\}$
- correlation coefficients

- quick convergence at optimal
 g = -0.211
- "flat" g = 0 flags collectivity

integrability	& beyond	
	0000000	

Across the borders of nuclear structure

Pairing correlations are ubiquitous

STUD 0	Ie I	naero	emac.	ker i	HIGENTI
Seight e					ugene,

イロト 不得下 イヨト イヨト

pairing integrability 0000000 000000 1		& beyond ○○○○○●○	
AP1roG (i)			

APnroG picks n occupied orbitals and leaves virtual orbitals free

$$|\mathsf{AP1roG}
angle = \prod_{lpha=1}^{N} \left(S_{lpha}^{\dagger} + \sum_{i=N+1}^{m} G_{lpha i} S_{i}^{\dagger}
ight)| heta
angle$$

projected Schrödinger approach: reference states

$$\langle \psi_{\rm ref} | H | {\sf AP1rog}
angle = E \langle \psi_{\rm ref} | {\sf AP1rog}
angle$$

🛸 P. A. Limacher, P. W. Ayers, P. A. Johnson, sdb, D. Van Neck, P. Bultinck (2013) JCTC 9, 1394

bps 25 / 30

	& beyond	
	000000	

AP1roG (ii)

features

- equivalent to pCCD
- sufficiently flexible (GVB-PP)
- static correlations from weak residual interactions
- orbital optimization 🖄
- ? collective pairs? Superconductivity/fluidity
- ? DOCI limit?

イロト イポト イヨト イヨト

T. Henderson, G. E. Scuseria, J. Dukelsky, A. Signoracci, and T. Duguet (2014) PRC89, 054305
 K. Boguslawski, P. Tecmer, P. W. Ayers, P. Bultinck, sdb, and D. Van Neck (2014) PRB89, 201106(R)
 P. Tecmer, K. Boguslawski, P. A. Johnson, P. A. Limacher, M. Chan, T. Verstraelen & P. W. Ayers (2014) JPCA, published online

integrability	conclusions

1 Pairing

- The quantum many-body problem
- Pairing

2 Integrability

- Richardson
- for Sn isotopes
- Gaudin

3 ...& beyond

- The quantum many-body problem revisited
- Richardson-Gaudin basis
- inspired by integrability

4 Outlook and conclusions

- Conclusions
- Acknowledgments

- * @ * * 注 * * 注 *

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

conclusions

pairing 0000000	integrability 000000	conclusions ●○○
	\ L	

¥

bps 28 / 30

メロト スポト メヨト メヨト 二日

Ċ	0	0	0	0	0

...& beyon

conclusions

thanks

bps 29 / 30

thanks & some references

Thank you for your attention!

- Exactly-solvable models derived from a generalized Gaudin algebra G. Ortiz, R. Somma , J. Dukelsky and S. Rombouts (2005) Nucl. Phys. B707, 421
- A New Mean-Field Method Suitable for Strongly Correlated Electrons: Computationally Facile Antisymmetric Products of Nonorthogonal Geminals P. A. Limacher, P. W. Ayers, P. A. Johnson, sdb, D. Van Neck, P. Bultinck (2013) J. Chem. Theor. Comp. 9, 1394
- Eigenvalue-based method and form-factor determinant representations for integrable XXZ Richardson-Gaudin models
 P. Claeys, sdb, Mario Van Raemdonck, and Dimitri Van Neck (2015) Phys. Rev. B91, 155102