

Search for new heavy resonances decaying in di-lepton or di-photon pairs at CMS

Giuseppe Fasanella

Overview

- Introduction and motivation
- Di-electron channel (most updated public results)
- **Di-photon channel** (most updated public results)
- Conclusions

Analyzed datasets:

- L=2.7 fb⁻¹ collected with B=3.8 T
- L=0.6 fb⁻¹ collected with B=0T (diphoton channel only: first time in CMS)

Introduction

- RUN2 brings LHC close to design:
 Increase √s to 13 TeV
 - exploit the parton luminosity ratio
- Dramatically increase discovery potential
- Two main experimental strategies:
- Bumps over a continuous background
- Excesses in some kinematic distributions

→ Although small x-sections, channels w/ leptons and photons provide the cleanest signature to discover new physics

CMS detector for Run2

Di-electron channel

Event Selection

- High energy electron pairs (HEEP) selection is used
- Cut-based selection designed to be highly efficient at high ${\rm E}_{{\scriptscriptstyle \rm T}}$
- Events categories: Barrel-Barrel (BB) or Barrel-Endcap (BE)
- The highest mass pair $\rm M_{ee}$ is selected

Variable	Barrel	Endcap
E _T	> 35 GeV	> 35 GeV
range	$ \eta_{sc} < 1.4442$	$1.566 < \eta_{sc} < 2.5$
isEcalDriven	=1	=1
$ \Delta \eta_{in}^{seed} $	< 0.004	< 0.006
$ \Delta \Phi_{in} $	< 0.06	< 0.06
H/E	<1/E + 0.05	< 5/E + 0.05
$\sigma_{i,i}$	n/a	<0.03
E ^{2x5} /E ^{5x5}	>0.94 OR $E^{1x5}/E^{5x5} > 0.83$	n/a
EM + Had Depth 1 Isolation	<2+0.03*Et +0.28*rho	<2.5 +0.28*rho for Et<50 else
		<2.5+0.03*(Et-50) +0.28*rho
Track Isol: Trk Pt	<5	<5
Inner Layer Lost Hits	<=1	<=1
ldxyl	< 0.02	< 0.05

Mass resolution & ID efficiency

• Mass resolution: data/MC discrepancy at the Z peak + MC contribution at higher mass

- EB-EB: Mass resolution ~ 1.3 % for M_{ee} > 2 TeV
- EB-EE: Mass resolution ~ 1.8 % for M_{ee} > 2 TeV
- ID efficiency: Scale factors for data and MC are studied using tag and probe method using DY events

close to 1 and flat vs E_{T}

Z' to di-electron: backgrounds

Three main types of SM backgrounds (BG) in the di-electron channel

- The most significant one is the irreducible SM Drell-Yan (DY) process
 - Backgrounds predicted using Powheg-pythia8
- The second most important BG comes from **real electrons** in processes with W and Z bosons involved
 - WW
 - tt (but self-vetoing due to the top boost at high energy)
 - $\dagger W$, WZ, ZZ, Z/ $\gamma^* \rightarrow \tau \tau$
 - These processes are flavor-symmetric:
 - Confirm the MC is well modeled by looking at the e-mu spectrum

- The third type of background is the jet background, where one or more jet is misidentified as an electron (di-jets events, W + jets ...)
 - Estimated directly with data (Fake Rate method)

1200

1600 180 m(ee) [GeV

1000

600

800

10-

data / bkg

*Plots from CMS-EX0-15-005

Mass spectra

• (Data -background)/background is consistent with 0

*Plots from CMS-EX0-15-005

Giuseppe Fasanella, ULB and INFN Roma I

Limits

- **Bayesian** unbinned likelihood with a flat prior for the signal cross-section and log-normal priors for signal and bkg uncertainties
- The integration is doing via the Metropolise-Hasting algorithm

Di-photon channel

Analysis strategy

- Select events with two photons of p₁ > 75 GeV
- Photons are required to pass a dedicated photon ID with isolation:
- B= 3.8 T L=2.7 fb⁻¹: 90% efficiency
- B= 0T L=0.6 fb⁻¹: 80% (EB) 70% (EE) efficiency (less efficient electron-veto)
- Split events in categories: (EB-EB, EB-EE) x (3.8 T, 0 T)
- Search region: $M_{YY} > 500 \text{ GeV}$ (background fits start below)
- Results interpreted for 3 widths and 2 resonance spin hypothesis scenarios

Data-driven methods:

- Efficiency scale factors from $Z \rightarrow ee$ with TP technique
- Energy scale and resolution corrections

Vertex selection

@ 3.8 T:

• $H \rightarrow \gamma \gamma$ BDT vertex is used

@ 0 T: New algorithm needed

- Vertex selected with the highest track multiplicity (robust approach)
- Alternative methods tested

*Plot from **CMS-EX0-16-018**

Energy corrections

MC used as a template to fit the data

Mass spectra @ B=3.8 T

$$f(m_{\gamma\gamma}) = m_{\gamma\gamma}^{a+b \cdot \log(m_{\gamma\gamma})}$$

*Plots from CMS-EX0-16-018

Mass spectra @ B=0 T

*Plots from CMS-EX0-16-018

Exclusion Limits: (3.8 T + 0 T)

• 10% improvement in sensitivity adding 0T

*Plots from CMS-EX0-16-018

p values @ (3.8 T + 0 T)

Giuseppe Fasanella, ULB and INFN Roma I

Combination with 8 TeV results*

* Taking the most sensitive result from 2 different analyses: HIG 14-006, Phys Lett B 750 (2015) 494-519 (for M<850 GeV) EXO 12-045 for M> 850 GeV

Exclusion Limits @ (13 TeV + 8 TeV)

Largest excess @ ~750 GeV

*Plots from CMS-EX0-16-018

p value comparison (13 TeV, 8 TeV)

 \rightarrow global significance ~ 1.6 σ

*Plots from CMS-EX0-16-018

Summary

Di-lepton channel @ 13 TeV:

No relevant excess observed over the SM-only hypothesis. Exclusion limits set up-to ~ 3.5 TeV

Di-photon channel @ 13 TeV:

The largest excess observed @ 760 GeV for narrow width hypothesis: local p-value is ~2.8-2.9 σ (global p-value < 1 σ)

Di-photon channel @ 13 TeV + 8 TeV:

The largest excess observed @ ~750 GeV for $\Gamma/m = 1.4 \times 10^{-2}$ hypothesis: local p-value ~3.4 σ (global p-value ~ 1.6 σ)

back-up

Systematic uncertainties $(Z' \rightarrow ee)$

• Results are presented as a ratio of cross sections at high mass to those at the Z

The **main sources** of systematic uncertainty are:

- Electron ID at high energy (assign 4%(Barrel) -6%(Endcap) per lepton)
- PDF uncertainties (mass dependent) from 6% to 20% up to 3 TeV
- Energy scale uncertainties: 2%
- The jet background uncertainty is 50% and the non DY BG is 7%
- Normalization at the Z peak ~ 2%

Limits (different widths considered)

*Plots from CMS-EX0-15-005

Giuseppe Fasanella, ULB and INFN Roma I

photon ID

photon category	Iso _{Ch} cut (GeV)	Iso_{γ} cut (GeV)	H/E cut	$\sigma_{i\eta i\eta}$ cut		
$\eta_{SC} < 1.4442$ non-sat.	5	2.75	5×10^{-2}	0.0105		
$\eta_{SC} < 1.4442$ sat.	5	2.75	5×10^{-2}	0.0112		
$\eta_{SC} > 1.566$ non-sat.	5	2.0	5×10^{-2}	0.028		
$\eta_{SC} > 1.566$ sat.	5	2.0	5×10^{-2}	0.030		
conversion-safe electron veto applied for all categories						

	EB	EE	
Iso_{γ} (GeV)	< 3.6	< 3	
N _{Trk}	< 4	< 4	
$\sigma_{i\eta i\eta}$	< 0.0106	< 0.028	
$\sigma_{i\phi i\phi}$	< 0.0106	< 0.028	
N _{missing hits}	> 1	>1	
			/ /

$$\begin{split} &\text{ISO}_{\gamma} = \Sigma E_{_{T}} \text{ of photons inside a cone } (\Delta R < 0.3) \\ &\text{N}_{_{trk}} = \text{number of tracks inside a cone } (\Delta R < 0.3) \\ &\sigma_{_{inin}} = \text{ shower transverse width along } \eta \\ &\sigma_{_{i\Phi i\Phi}} = \text{shower transverse width along } \Phi \\ &\text{N}_{_{missing hits}} \text{ (electron veto)} \end{split}$$

0 T

3.8 T

*Plots from CMS-EX0-16-018

ID efficiency

2.7 fb⁻¹ (13 TeV)

400

450

500

500

450

p_{_} (GeV)

400

Interpretation

- Statistical interpration from simultaneous fit to Myy distribution in the 4 analysis categories: (EBEB, EBEE)x(3.8T, 0T)
- Background model: parametric fit to data → Possible mismodelling assessed with MC and accounted as "bias term"
- Signal model: interpolation of MC prediction (+ energy corrections and scale factors)
- Spin-0 / Spin-2 results interpretation, for 3 width hypotheses

Uncertainties related to possible background shape mismodeling

- Goodness of fit of background model assessed locally (as a function of m_{yy}) using MC
 - Study pull of predicted number of background events in several mass windows

$$\sigma_{i}^{j} = rac{N_{\hat{g}_{i}}^{w_{j}} - N_{h}^{w_{j}}}{\sigma(N_{\hat{g}_{i}}^{w_{j}})}$$

- Model acceptable if
 b = | median(p) | <0.5 for all windows
- If not, increase error by "bias term"

S

$$\tilde{p}_{j}^{i} = \frac{N_{\hat{g}_{i}}^{w_{j}} - N_{h}^{w_{j}}}{\sqrt{\sigma^{2}(N_{\hat{g}_{i}}^{w_{j}}) + \beta_{I}^{2}(w_{j})}}$$
tat. Uncertainty on the fit Extra uncertainty ("bias term")

Modeling of the bias term

• Bias term included in hypothesis test adding a signal-like component to the background model

$$bkg(m_{yy}|\Theta_{bias}) = N_{bkg} \cdot \left(\frac{N_{bkg} - \Theta_{bias}}{N_{bkg}} bkg(m_{yy}) + \frac{\Theta_{bias}}{N_{bkg}} sig(m_{yy}) \right) \cdot Gaus(\Theta_{bias}|0, N_{bias})$$

$$- \text{Normalization of signal-like component constrained from result of bias study}$$

$$N_{bias} = \int sig(m_{yy})\beta(m_{yy}) \sim FWMH(sig) \cdot \beta(m_{G})$$

$$= \int sig(m_{yy})\beta(m_{yy}) \sim FWMH(sig) \cdot \beta(m_{G})$$

Systematic uncertainties

	Source	3.8T	0Т	Correlation
F	PDFs	6%	6%	1
Yorr	Efficiency	8%	16%	0
	Luminosity	2.6%	12%	0
	Energy scale EBEB	1%	1%	1
e O	Energy scale EBEE	1%	1%	1
hal	Energy scale difference	0%	1%	0
S	Energy resolution EBEB	0.5%	0.5%	0
	Energy resolution EBEE	0.5%	0.5%	0

• The total uncertainty is dominated by the statistical one

Exclusion Limits: (3.8 T + 0 T)

10% improvement in sensitivity adding 0T

p values 3.8 T & 0 T superimposed

Narrow width

Wide width

Giuseppe Fasanella, ULB and INFN Roma I

p-values: summary

Dataset	Mass	Local p-value
3.8 T	~ 760 GeV	2.6 σ
0 T	~ 800 GeV	2.5 σ
3.8 T + 0T	~ 760 GeV	2.8-2.9 σ

Including "look elsewhere effect" for all spin & widths hyphotheses:

- Pseudo-experiments to compute bkg-only p-values for full search region for each alternative hypothesis
- min(p₀) for each pseudo-experiment considering all hypothesis (Γ, J, Mass)
- Compare global significance distribution with observed value
- Global significance from observed excess is smaller than 1 σ

Systematic Uncertainties: correlation

- All normalization systematics assumed uncorrelated between 8 and 13TeV dataset
- Correlation model for energy scale and resolution detailed in the table below:

Source	13TeV	8T	Correlation
Energy scale EBEB	1%	0.5%	0.5
Energy scale EBEE	1%	2%	0.5
Energy resolution EBEB	0.5%	0.5%	0
Energy resolution EBEE	0.5%	0.5%	0

Exclusion Limits @ (13 TeV + 8 TeV)

Largest excess @ ~750 GeV

*Plots from CMS-EX0-16-018

p value @ (13 TeV + 8 TeV)

- Lowest p-value for narrow width ~ 3.4 σ

*Plots from CMS-EX0-16-018

Global significance for (13 TeV + 8 TeV) combination

@ 8 TeV: use sliding window for mass fit (cannot throw correlated toy experiments)

Compatibility 8 TeV & 13 TeV

- Likelihoods of the fits to a S+B hypothesis vs equivalent x-sec
- Narrow scalar and RS graviton hypothesis @ 750 GeV chosen
- The equivalent x-sections from the 2 datasets compatible with each other (for both J=0 and J=2)

ATLAS diphoton

