

Measurement of the cross section of top quark pair production in association with a Z boson in pp collisions at 13 TeV

Deniz Poyraz

on behalf the CMS collaboration

General Scientific Meeting 2016 of the Belgian Physical Society, 18 May 2016, UGent, Ghent

top quark

Why is it still interesting after 20 years after its discovery?

- ► the top quark is unique in SM:
 - the heaviest particle
 - decays before hadronisation " bare quark "
 - coupling to Higgs ~1 " a special role in EWSB? "
- precision measurements

probe to new physics

LHC is a top factory!

Deniz Poyraz, ttZ at 13 TeV

CMS/

t**t**V (V = W,Z)

 $t\bar{t}V$: associated production of a top quark pair with vector bosons

- background for ttH and many BSM processes
- top quark coupling with EW bosons
- extensions of SM modifies the couplings

ttZ: direct measurement of the top quark coupling to Z

tīV: limits to dimension-six operators

ttV decay channels

$$\begin{split} t\bar{t}W &\to (bjj)(bjj)(jj) \\ t\bar{t}W &\to (bjj)(bjj)(l\nu) \\ t\bar{t}W &\to (b\ell\nu)(bjj)(\ell\nu) \\ t\bar{t}W &\to (b\ell\nu)(bl\nu)(\ell\nu) \end{split}$$

 $ttZ \rightarrow (bjj)(bjj)(jj)$ $t\bar{t}Z \to (bjj)(bjj)(\ell\ell)$ $t\bar{t}Z \to (b\ell\nu)(bjj)(\ell\ell)$ $t\bar{t}Z \to (b\ell\nu)(b\ell\nu)(\ell\ell)$

ttW: 2 lepton final state

best signal/background

tīZ: 3 lepton final state

CMS

4

the most sensitive channels to study ttV

the experiment and the detector

ttV overview

8 TeV 19.7 fb⁻¹ 10.1140/epjc/s10052-014-3060-7

Cut and count analysis

- ttW: SS final states
- ttZ: 3I, 4I final states

$$\sigma_{t\bar{t}W} = 170^{+114}_{-106}$$
 fb with 1.6σ
 $\sigma_{t\bar{t}Z} = 200^{+89}_{-76}$ fb with 3.1σ

 $\sigma_{t\bar{t}W} = 382^{+117}_{-102}$ fb with 4.8 σ

 $\sigma_{t\bar{t}Z} = 242^{+65}_{-55}$ fb with 6.4 σ

-1.5

-2.0

-2.5

-3.0

8 TeV 19.7 fb⁻¹ 10.1007/JHEP01(2016)096

MVA + event reconstruction techniques

- ttW: SS, 31 final states
- ttZ: OS, 3I, 4I final states

Constraints on new physics:

- Constraints on the axial and vector components of the tZ coupling
- Constraints on dimension-six operators

Operator	Best fit point(s)	1 standard deviation CL	2 standard deviation CL
ē _{u₿}	-0.07 and 0.07	[-0.11, 0.11]	[-0.14, 0.14]
ē₃₩	-0.28 and 0.28	[-0.36, -0.18] and [0.18, 0.36]	[-0.43, 0.43]
$\bar{c}'_{\rm HQ}$	0.12	[-0.07, 0.18]	[-0.33, -0.24] and $[-0.02, 0.23]$
\bar{c}_{Hu}	-0.47 and 0.13	[-0.60, -0.23] and [-0.11, 0.26]	[-0.71, 0.37]
\bar{c}_{HQ}	-0.09 and 0.41	[-0.22, 0.08] and [0.24, 0.54]	[-0.31, 0.63]

$$1.0$$

$$0.5$$

$$0.0$$

$$-0.5$$

$$CMS$$

$$0.0$$

$$-0.5$$

$$CMS$$

 $^{-2}\Delta C_{1,V}$

0

2

-4

-6

CMS/

56

Deniz Poyraz, ttZ at 13 TeV

tīZ at 13 TeV

13 TeV 2.7 fb⁻¹ TOP-16-009

tīZ: 3lepton, 4lepton final states

SM cross sections

Process	8 TeV	$13 { m TeV}$	13 TeV / 8 TeV
ttZ(inclusive)	0.206	0.760	3.69
ttW(inclusive)	0.232	0.57	2.46
$\operatorname{tt}(\operatorname{inclusive})$	234	831	3.55
ZZ (to 4l)	0.078	0.157	2.03
WZ (to $3l$)	1.058	2.165	2.05
Wj (to $l+j$)	37509	61526.7	1.64
Zj (to $2l+j$)	3533	6025	1.71
ttH (inclusive)	0.129	0.509	3.94

8 TeV to 13 TeV
★ signal / background favoured
★ 3σ sensitivity with 2.5 fb⁻¹

7

tīZ 3 lepton channel

UNIVERSITEIT

GENT

optimisation of the analysis

baseline selections:

- exactly 3 leptons (p_T > 30, 20, 10 GeV)
- $|m_{(SFOS)} m_Z| < 10 \text{ GeV}$

Signal extraction in 8 different bins: baseline selections and:

- Njets = 2 and Nbjets = $0, \ge 1$
- Njets = 3 and Nbjets = 0, = 1, \geq 2
- Njets \geq 4 and Nbjets = 0, = 1, \geq 2

- 2 jets bin: to constraint the background
- 3 jets bin: to gain sensitivity when a jet is misidentified

WZ background

semi data-driven approach:

- data/MC in WZ control region
- 3 leptons (p_T > 30,20,10 GeV)
- | m_(II) -m_Z | <10 GeV
- MET > 30 GeV and mT_{Imet} > 50 GeV
- Njets < 2 and Nbjets =0

Non-prompt background estimation

- estimate the probability of a non-prompt (fake) lepton to pass the analysis selections —> Fake Rate (FR)
- measure FR as a function of pT and η in a QCD enriched control region dominated by non prompt leptons
 - FR in data is ~5-40%
 - data and MC agrees up to 30%
 - the statistical uncertainty 10-30%

Closure test of the FR: using QCD MC

- application region: ttbar and DY
 - 3 leptons where SFOS lepton pair is a Z candidate
 - at least one of the leptons fail tight selection but pass loose selection

predicted signal and background yields

tīZ 4 lepton channel

GEN

Final state:

- exactly 4 leptons
 with (p_T > 20,10,10, 10 GeV)
- lepton charge sum = 0
- m(II) > 12 GeV
- \geq 1 SFOS pair, $|m_{(II)} m_Z| < 20 \text{ GeV}$
- second Z veto for the 2nd SFOS
- ≥ 2 jets
- ≥ 1 loose b tag-jets

Event selection in two categories:

- Njets \geq 2 and Nbjets = 0
- ► Njets ≥ 2 and Nbjets ≥ 1
 - Backgrounds: ZZ(main), H—>ZZ, ttH, WWZ(small): estimated from MC

ZZ background

- 4 leptons
- lepton charge sum = 0
- m_(II) > 12 GeV
- \geq 2 SFOS pair, $|m_{(II)} m_Z| <$ 20 GeV

very pure ZZ selection!

Deniz Poyraz, ttZ at 13 TeV

summary of systematics

Source	Syst. uncertainties $t\bar{t}Z$ in 3L	Syst. uncertainties $t\bar{t}Z$ in 4L
Luminosity	2.7%	2.7%
Jet Energy Scale	2-8%	1-7%
Jet Energy Resolution	1-6%	1%
Trigger	3%	1%
BTagging	1-8%	1-5%
PU modeling	3%	1%
Lepton Id., Eff.	4.5%	5-7%
μ_R/μ_F scale choice	3-4%	4%
PDF choice	3%	3%
Non-prompt background	30%	-
WZ background cross section	20%	-
ZZ background cross section	20%	20%
Rare SM bkg	50%	50%
tīW/tīH/tZq bkg	25%	25%
ttZ MC stat. uncertainty	5-17%	13-20%

results 3 lepton + 4 lepton

binned likelihood fit to all categories

Channel	Expected significance	Observed significance
3ℓ analysis	2.9	3.5
4ℓ analysis	1.2	0.9
3ℓ and 4ℓ combined	3.1	3.6

$$\sigma_{t\bar{t}Z} = 1065^{+352}_{-313}(\text{stat.})^{+168}_{-142}(\text{sys.}) \text{ fb}$$

aMCatNLO = 839.3⁺⁸⁰₋₉₂(scale)⁺²⁵₋₂₅(pdf)⁺²⁵₋₂₅(\alpha_s) fb

evidence of $t\bar{t}Z$ at 13 TeV

event display 2015 data

3 lepton channel

$$t\bar{t}Z \to (t \to be^{\pm}\nu)(t \to bjj)(Z \to \mu^{+}\mu^{-})$$

Deniz Poyraz, ttZ at 13 TeV

CMS/

event display 2015 data

▶ 4 lepton channel

 $t\bar{t}Z \to (t \to be^{\pm}\nu)(t \to b\mu^{\mp}\nu)(Z \to e^{+}e^{-})$

CMS

18

summary

- ttZ cross section measurement with 2015 Data corresponding to 2.7 fb⁻¹ at 13 TeV in 3 lepton and 4 lepton channels are presented
- Iooking forward to 2016 Data for more precise results!!
- with more statistics new physics interpretation!

Thanks for your attention!

