

Short-range correlations and two-nucleon knockout in neutrino-nucleus scattering

Tom Van Cuyck, N. Jachowicz, R. González Jiménez V. Pandey, J. Ryckebusch and N. Van Dessel

BPS meeting 2016

May 18, 2016

2015 NOBEL PRIZE in Physics

The discovery of these oscillations shows that neutrinos have mass.

Neutrino oscillations

The expected number of neutrinos did not match the actual number number of detected neutrinos – the conclusion being that the expected neutrinos had undergone a transformation on their way to the detector.

Accelerator-based experiment

- 1. ν_{μ} production at near detector
- 2. neutrino oscillations occur between near and far detector
- 3. count ν_e , ν_μ and ν_τ at near and far detector
- 4. extract θ and Δm from differences between near and far detector

 \rightarrow precise neutrino-nucleus cross-section needed, major source of uncertainty is associated with nuclear interactions

Neutrino interaction event

$$\nu_{\mu} + A \rightarrow \mu^{-} + X$$

Cherenkov detector: only final state lepton is detected

Neutrino interaction event

New generation detector: final state nucleons and pions detected as well

Ref: J.A. Formaggio, et al.

Rev.Mod.Phys. 84 (2012) 1307

Cross section

- ▶ QE Quasi-elastic scattering: nucleon stays intact $\nu_{\mu} + n \rightarrow \mu^{-} + p$
- ► RES Resonance production: nucleon is excited $\nu_{\mu} + n \rightarrow \mu^{-} + \Delta^{+}$ $\downarrow p + \pi$

▶ DIS - Deep inelastic scattering: nucleon breaks up $\nu_{\mu} + n \rightarrow \mu^{-} + X$

- Ground state nucleus is an IPM
 - Calculated with a Hartree-Fock (HF) approximation using a Skyrme NN force (SkE2)
 - Accounts for binding energies and nuclear structure
 - Pauli-blocking effects included inherently
- Continuum wave functions are calculated using the same NN potential
 - Orthogonality is preserved between initial and final states
 - Distortion effects of the residual nucleus on the ejected nucleons are incorporated

Short-range correlations

Fat tails in the single-nucleon momentum distribution cannot be explained within the impulse approximation (IA)

Ref: J. Ryckebusch, et al., J. Phys. G: Nucl. Part. Phys. 42 055104 (2015)

Short-range correlations

Fat tails in the single-nucleon momentum distribution cannot be explained within the impulse approximation (IA)

- Nucleons occur in pairs with high relative momenta and low center-of-mass momenta (SRC pairs)
 - correlations have a short range
 - tensor correlations dominate at intermediate momenta
 - central correlations dominate at high momenta
- ► A signature of SRC is back-to-back 2N knockout
- ▶ SRC also have an effect on 1N knockout

Ref: J. Ryckebusch, *et al.*, Nucl.Phys. A624, 581 (1997) S. Janssen, *et al.*, Nucl.Phys. A672, 285 (2000) (electron-scattering model with SRC + MEC)

Short-range correlations

Correlated wave functions $|\Psi\rangle$ are constructed by acting with a many-body correlation operator $\widehat{\mathcal{G}}$ on the uncorrelated Hartree-Fock wave functions $|\Phi\rangle$

$$|\Psi
angle = rac{1}{\sqrt{\mathcal{N}}}\widehat{\mathcal{G}}|\Phi
angle, \qquad ext{with} \qquad \mathcal{N} = \langle\Phi|\widehat{\mathcal{G}}^{\dagger}\widehat{\mathcal{G}}|\Phi
angle.$$

The central (c), tensor $(t\tau)$ and spin-isospin $(\sigma\tau)$ correlations are responsible for majority of the strength. Transition matrix elements between correlated states $|\Psi\rangle$ can be written as matrix between uncorrelated states $|\Phi\rangle$, with an effective transition operator

$$\langle \Psi_f | \widehat{J}^{\mathsf{nucl}}_{\mu} | \Psi_i \rangle = rac{1}{\sqrt{\mathcal{N}_i \mathcal{N}_f}} \langle \Phi_f | \widehat{J}^{\mathsf{eff}}_{\mu} | \Phi_i
angle.$$

In the IA, the many-body nuclear current can be written as a sum of one-body operators

$$\widehat{J}_{\lambda}^{\mathsf{eff}} = \widehat{\mathcal{G}}^{\dagger} \widehat{J}_{\mu}^{\mathsf{nucl}} \widehat{\mathcal{G}} = \left(\prod_{j < k}^{A} \left[1 + \widehat{l}(j, k) \right] \right)^{\dagger} \sum_{i=1}^{A} \widehat{J}_{\lambda}^{[1]}(i) \left(\prod_{l < m}^{A} \left[1 + \widehat{l}(l, m) \right] \right).$$
12/19

Short-range correlations

$$\widehat{J}_{\lambda}^{\text{eff}} = \widehat{\mathcal{G}}^{\dagger} \widehat{J}_{\mu}^{\text{nucl}} \widehat{\mathcal{G}} = \left(\prod_{j < k}^{A} \left[1 + \widehat{l}(j,k) \right] \right)^{\dagger} \sum_{i=1}^{A} \widehat{J}_{\lambda}^{[1]}(i) \left(\prod_{l < m}^{A} \left[1 + \widehat{l}(l,m) \right] \right).$$

Use the fact that SRC is a short-range phenomenon to reduce the sums.

- Terms linear in the correlation operator are retained
- A-body operator \rightarrow 2-body operator

$$\widehat{J}_{\lambda}^{\text{eff}} \approx \underbrace{\sum_{i=1}^{A} \widehat{J}_{\lambda}^{[1]}(i)}_{\text{one-body (IA)}} + \underbrace{\sum_{i < j}^{A} \widehat{J}_{\lambda}^{[1],\text{in}}(i,j), + \left[\sum_{i < j}^{A} \widehat{J}_{\lambda}^{[1],\text{in}}(i,j)\right]^{\dagger}}_{\text{two-body (SRC)}}$$

where

$$\widehat{J}_{\lambda}^{[1],\text{in}}(i,j) = \left[\widehat{J}_{\lambda}^{[1]}(i) + \widehat{J}_{\lambda}^{[1]}(j)\right]\widehat{I}(i,j)$$

 Effective nuclear current is the sum of a one-body (IA) and two-body (SRC) current

One-nucleon knockout

Directly calculate the double differential cross section

 $\frac{\mathrm{d}\sigma}{\mathrm{d}E_{l'}\mathrm{d}\Omega_{l'}} = 4\pi\sigma^X\zeta f_{rec}^{-1} \big[v_{CC}W_{CC} + v_{CL}W_{CL} + v_{LL}W_{LL} + v_TW_T - hv_{T'}W_{T'} \big],$

with v and σ^{X} containing leptonic information, e.g.

$$\sigma^{\text{Mott}} = \left(\frac{\alpha \cos\left(\theta_{e'}/2\right)}{2E_e \sin^2\left(\theta_{e'}/2\right)}\right)^2, \qquad \sigma^W = \left(\frac{G_F \cos\theta_c E_\mu}{2\pi}\right)^2,$$

and the response functions containing the nuclear information

$$\begin{split} W_{CC} &= \left|\mathcal{J}_{0}\right|^{2} \\ W_{CL} &= 2 \operatorname{Re} \left(\mathcal{J}_{0} \mathcal{J}_{3}^{\dagger}\right) \\ W_{LL} &= \left|\mathcal{J}_{3}\right|^{2} \\ W_{T} &= \left|\mathcal{J}_{+}\right|^{2} + \left|\mathcal{J}_{-}\right|^{2} \\ W_{T'} &= \left|\mathcal{J}_{+}\right|^{2} - \left|\mathcal{J}_{-}\right|^{2} \end{split} \qquad \begin{aligned} \mathcal{J}_{0} &= \left\langle \Psi_{f} \left|\widehat{J}_{0}(q)\right| \Psi_{i} \right\rangle \\ \mathcal{J}_{1} &= \left\langle \Psi_{f} \left|\widehat{J}_{-}(q)\right| \Psi_{i} \right\rangle \\ \mathcal{J}_{3} &= \left\langle \Psi_{f} \left|\widehat{J}_{3}(q)\right| \Psi_{i} \right\rangle \end{aligned}$$

SRC results - 1p1h

The effective two-body operator affects the 1p1h cross section

Figure: W_{CC} and W_T response functions for $1p1h^{12}C(\nu_{\mu},\mu^{-})$

- Small increase in longitudinal channel W_{CC}
- Small decrease in transverse channel W_T

Two-nucleon knockout

Start with the 8-fold 'exclusive' differential cross section

$$\frac{\mathrm{d}\sigma}{\mathrm{d}E_{l'}\mathrm{d}\Omega_{l'}\mathrm{d}T_{a}\mathrm{d}\Omega_{a}\mathrm{d}\Omega_{b}} = \sigma^{X}\zeta f_{rec}^{-1}$$

$$\times \left[v_{CC}W_{CC} + v_{CL}W_{CL} + v_{LL}W_{LL} + v_{T}W_{T} + v_{TT}W_{TT} + v_{TC}W_{TC} + v_{TL}W_{TL} - h(v_{T'}W_{T'} + v_{TC'}W_{TC'} + v_{TL'}W_{TL'})\right],$$

The leptonic factors v and σ^{X} are independent of the number of knockout particles and five more response functions appear

$$\begin{split} W_{TT} &= 2 \operatorname{Re} \left(\mathcal{J}_{+} \mathcal{J}_{-}^{\dagger} \right) \\ W_{TC} &= 2 \operatorname{Re} \left(\mathcal{J}_{0} \left(\mathcal{J}_{+} - \mathcal{J}_{-} \right)^{\dagger} \right) \\ W_{TL} &= 2 \operatorname{Re} \left(\mathcal{J}_{3} \left(\mathcal{J}_{+} - \mathcal{J}_{-} \right)^{\dagger} \right) \\ W_{TC'} &= 2 \operatorname{Re} \left(\mathcal{J}_{0} \left(\mathcal{J}_{+} + \mathcal{J}_{-} \right)^{\dagger} \right) \\ W_{TC'} &= 2 \operatorname{Re} \left(\mathcal{J}_{3} \left(\mathcal{J}_{+} + \mathcal{J}_{-} \right)^{\dagger} \right) \\ W_{TL'} &= 2 \operatorname{Re} \left(\mathcal{J}_{3} \left(\mathcal{J}_{+} + \mathcal{J}_{-} \right)^{\dagger} \right) \\ \end{split}$$

SRC results - Exclusive 2p2h

$$\frac{\mathrm{d}\sigma}{\mathrm{d}E_{\mu}\mathrm{d}\Omega_{\mu}\mathrm{d}T_{b}\mathrm{d}\Omega_{b}\mathrm{d}\Omega_{a}}(\nu_{\mu},\mu^{-}N_{a}N_{b}),$$

- $N_a = p, N_b = p', n$
- exclusive differential cross section shows clear back-to-back knockout signal

ArgoNeuT event

Figure: $E_{\nu\mu} = 750 \text{ MeV}, E_{\mu} = 550 \text{ MeV}, \theta_{\mu} = 15^{\circ} \text{ and } T_{p} = 50 \text{ MeV} \text{ in lepton scattering plane } (\varphi_{a}, \varphi_{b} = 0^{\circ}) \text{ on } {}^{12}\text{C}.$

SRC results - Inclusive 2p2h

We want to calculate the contribution of the 2N knockout channel to the double differential cross section

$$\frac{\mathrm{d}\sigma}{\mathrm{d}E_{l'}\mathrm{d}\Omega_{l'}}(l,l') = \int \mathrm{d}T_b \mathrm{d}\Omega_b \mathrm{d}\Omega_a \frac{\mathrm{d}\sigma}{\mathrm{d}E_{l'}\mathrm{d}\Omega_{l'}\mathrm{d}T_b\mathrm{d}\Omega_b\mathrm{d}\Omega_a}(l,l'N_aN_b)$$

Inclusive 2p2h

- contribution of 2N knockout $A(I, I'N_aN_b)$ to quasielastic A(I, I')
- incoherent sum of pp' and pn knockout
- ► 2N knockout from all possible shell combinations (1s1/2)², (1s1/2)(1p3/2) and (1p3/2)²
- $\int d\Omega_b$ and $\int d\Omega_a$ analytical integration
- $\int dT_b$ numerical integration

SRC results - Inclusive 2p2h

Strength of the 2p2h contribution

- tensor SRC dominates at small to intermediate ω
- central SRC dominates at large ω
- tensor dominated by pn pairs

Figure: (e, e') scattering on ${}^{12}C$

Inclusive 2p2h appears as a broad background to 1p1h

Summary and outlook

Summary

- The model describes the QE peak for electron scattering very well, so it can be expected to work for neutrinos as well
- ► For the exclusive 2*N* knockout calculations, we started with a model for electron scattering, which was tested against data
- ► Calculated contribution of SRC to double differential QE cross section
- ▶ Inclusive 2p2h appears as a broad background to 1p1h

Outlook

- Extending the model with meson-exchange currents in a consistent approach
 - Vector meson-exchange current model exists for electron scattering
 - Axial meson-exchange currents are challenging