

Flavour changing neutral currents of top quarks at the LHC, a probe for new physics

Isis Van Parijs Vrije Universiteit Brussel IIHE – CMS – CERN BPS Meeting 18 May 2016

Beyond the SM

In the quest for new physics, FCNCs provide a model independent look into BSM without the need for new heavy particles

The Large Hadron Collider

ALIC

Home to e.g. CMS and ATLAS. Experiments that study proton collisions at 7 TeV, 8 TeV and 13 TeV

CMS

A 27-kilometre ring of superconducting magnets and accelerating structures

FCNCs with top quarks

Flavour changing neutral current transitions are interaction processes where a fermion undergoes a change of flavour without the alternation of its charge.

Extensions of the SM can increase the BR up O(12)!

There is a whole landscape of FCNC searches at CMS

q = u / c	Single top (at production)	Top pair (at decays)	Reference	
tgq	B(t→gc) < 3.44 10 ⁻³ B(t→gu) < 3.55 10 ⁻⁴	N/A	CMS-PAS-TOP-14-007	
tZq	B(t→uZ) < 0.51 10 ⁻² B(t→cZ) < 11.4 10 ⁻²	B(t → Zq) < 0.05 10 ⁻²	CMS-PAS-TOP-12-021 arXiv:1312.4194	
tγq	B(t → uγ) < 1.3 10 ⁻⁴ B(t → uγ) < 1.7 10 ⁻³) < 1.3 10 ⁻⁴) < 1.7 10 ⁻³ N/A		
tHq	N/A	B(t→uH) < 0.71 10 ⁻² B(t→cH) < 0.47 10 ⁻² B(t→uH) < 1.92 10 ⁻² B(t→cH) < 1.16 10 ⁻² B(t→qH) < 0.93 10 ⁻²	CMS-PAS-TOP-14-019 (diphoton) CMS-PAS-TOP-14-020 (bbar) CMS-PAS-TOP-13-017 (WW/ZZ/тт)	

There is a whole landscape of FCNC searches

$$\mathcal{L} = \sum_{q=u,c} \left[\sqrt{2} g_s \frac{\kappa_{gqt}}{\Lambda} \bar{t} \sigma^{\mu\nu} T_a (f_{Gq}^L P_L + f_{Gq}^R P_R) q G_{\mu\nu}^a \right] \\ + \frac{g}{\sqrt{2}c_W} \frac{\kappa_{zqt}}{\Lambda} \bar{t} \sigma^{\mu\nu} (f_{Zq}^L P_L + f_{Zq}^R P_R) q Z_{\mu\nu} \\ - e \frac{\kappa_{\gamma qt}}{\Lambda} \bar{t} \sigma^{\mu\nu} (f_{\gamma q}^L P_L + f_{\gamma q}^R P_R) q A_{\mu\nu} \\ + \frac{g}{\sqrt{2}} \bar{t} \kappa_{Hqt} (f_{Hq}^L P_L + f_{Hq}^R P_R) q H \right] + \text{h.c.}$$

FCNCs: a top, a gluon and a quark

7 TeV pp collision data Luminosity of 5 fb⁻¹ single top

 $q\bar{q} \to t\bar{c}$

B(t→ug) < 3.55 10⁻⁴ B(t→cg) < 3.44 10⁻³

- ★ t \rightarrow qg not possible due to multi-jet QCD background
- **X** Look at $qg \rightarrow t \rightarrow Wb \rightarrow lv b$
- X Muonic decay channel: muon + jets
- **×** Signature:

1 muon, MET, \geq 2 jets with \geq 1 b jet

- X Main backgrounds:
 - Single top, top quark pair, W+jets, diboson, Drell Yann multi-jet QCD
- Multi-jet background estimated from data using Bayesian Neural Network template fit

tgq

Bayesian Neural Network classifier to differentiate signal from background

- Separate BNN for tug and tcg
- Used simultaneously in statistical analysis

tgq

FCNCs: a top, a Z boson and a quark

7+8 TeV pp collision data Luminosity of 19.7 fb⁻¹ top pair

- **★** tt \rightarrow Zq + Wb \rightarrow llq + vl b
- **×** Signature:
 - 3 leptons, MET, \geq 2 jets with \geq 1 b jet

- Main backgrounds: diboson+jets, ttbar + X, Drell Yann; top pair, tZq
- ✗ Bkgds are estimated from data

Limits extracted using a modified frequentist (CLs) likelihood method

3 regions used:

- diboson and Drell Yann: 0 b jets
- signal: 1 b jet
- ttX and tt : > 1 b jet

tZq

FCNCs: a top, a photon and a quark

8 TeV pp collision data Luminosity of 19.8 fb⁻¹ single top

× q → t γ → Wb γ → vµ b γ **×** Signature
1 muon, 1 photon, MET, 1 b jet

- X Main backgrounds: W(γ)+jets, Z(γ)+jets, top pair (+ γ), diboson (+ γ) production
- × W(γ) + jets background estimated from NN in data with e.g. cos(W,γ)

tγq

FCNCs: a top, a H boson and a quark - FCNH -

Different final states based on decay of the H boson:

- $H \rightarrow WW/ZZ/TT$
 - CMS-PAS-TOP-13-017
 - multi-lepton final states, easy to ID, small bkgd

- $H \rightarrow \gamma \gamma$
 - CMS-PAS-TOP-14-019
 - low BR, but very clean, excellent mass resolution
- $H \rightarrow bbar$
 - CMS-PAS-TOP-14-020
 - high BR, suffers from multi-jet bkgd

DIPHOTON FINAL STATE

FCNCs: a top, a H boson and a quark

8 TeV pp collision data Luminosity of 19.7 fb⁻¹ Top pair

 $B(t \rightarrow uH) < 0.42\%$ B(t \rightarrow cH) < 0.47\%

- **x** tt \rightarrow bW + qH with H \rightarrow $\gamma\gamma$ **x** Signature hadronic channel:
 - 2 photons, \geq 4 jets from which 1 b jet
- ✗ Signature leptonic channel:
 2 photons, ≥ 1 lepton, MET, ≥ 2 jets from which 1 b jet

- Main backgrounds:
 γγ+ jets,W+jets, ttbar + γγ, ttH
- Non resonant γγ background (non higgs) estimated from data

DIPHOTON FINAL STATE

Fit of the diphoton spectrum to data with bkgd-only and bkgd + signal in the tHquar hadronic and leptonic channel

Searching beyond the Standard Model in a model independent way with many decay channels

FCNC

The key elements of the FCNC searches at 13 TeV

In summary: FCNC at the LHC

FCNCs are closing in on excluding certain BSM models and are a clear way of searching for any new physics in various final states

Isis Van Parijs Vrije Universiteit Brussel IIHE – CMS – CERN BPS Meeting 18 May 2016

Back up slides

FCNCs are closing in on excluding certain BSM models and are a clear way of searching for any new physics in various final states

q = u / c	Current best limit	Prediction for 2HDM and MSSM	Reference
tgq	B(t→ug) < 0.004 % (ATLAS) B(t→cg) < 0.020 % (ATLAS)	~10⁻⁴ (2HDM), 8 10⁻⁵ (MSSM)	arXiv:1509.00294v1
tZq	B(t → Zq) < 0.05 % (CMS)	~10 ⁻⁷ (2HDM), 2 10 ⁻⁶ (MSSM)	arXiv:1312.4194
tγq	B(t → uγ) < 0.013 % (CMS) B(t → uγ) < 0.17 % (CMS)	∼10 ⁻⁶ (2HDM), 2 10 ⁻⁶ (MSSM)	arXiv:1509.00294
tHq	B(t→uH) < 0.42 % (CMS) B(t→cH) < 0.46 % (ATLAS)	1.5 10 ⁻⁷ (2HDM), 10 ⁻⁵ (MSSM)	arXiv:CMS-PAS- TOP-14-019 arXiv:1509.06047

ialysis are on the way

Summary of FCNC at the LHC										
-	g-q-t	u/c g	Z-q-t t u/c z Z	γ-q-t t	u/e V V V	H-q-t				
Experiment	BR(t→ug)	BR(t → cg)	Reference	Experiment	BR(t→uZ)	BR(t → cZ)	Reference			
ATLAS	0.004 %	0.017 %	arXiv: 1509.00294v1	ATLAS	0.07 %		arXiv: 1508.05796			
CMS	0.036 %	0.34 %	CMS-PAS- TOP-14-007	CMS	0.05 %		Phys. Rev. Lett. 112 (2014) 171802			
Experiment	BR(t→uγ)	BR(t→cγ)	Reference	Experiment	BR(t→uH)	BR(t→cH)	Reference			
CMS	0.013 %	0.17 %	CMS-PAS- TOP-14-003	ATLAS	0.45 %	0.46 %	arXiv: 1509.06047			
				CMS	0.42 %	0.47 %	CMS-PAS- TOP-14-019			

Summary of FCNC at the LHC

FCNCs: a top, a gluon and a quark

8 TeV pp collision data Luminosity of 20.3 fb⁻¹ ATLAS

B(t→ug) < 4 10⁻⁵ B(t→cg) < 20 10⁻⁵

- ★ t → qg not possible due to multi-jet QCD background
 - → look at qg → t → Wb → lv b
- **X** Signature:
 - 1 lepton, MET, 1 b jet
- Main backgrounds: V+jets, SM top quark production, diboson production, multi-jet QCD
- Multi-jet background estimated with a fit of the MET from data

Neural Network classifier with 13 variables based on several differences

- 1. Pt top quark is softer in FCNC
 - \rightarrow W and b are back to back \neq SM top
- Pt W boson is high in FCNC 2. \rightarrow small angles for lv \neq diboson, W/Z + jets
- Top quark charge asymmetry differs in ugt channel 3.
 - \rightarrow FCNC production of top = 4 x anti top SM top = 2 x anti top

tgq

FCNCs: a top, a H boson and a charm quark

8 TeV pp collision data Luminosity of 20.3 fb⁻¹ ATLAS

tHq

★ bbar search

- \geq 1 lepton, MET, \geq 4 jets where \geq 2 b jets
- ★ Recast of SM ttH multilepton search 2-3 leptons, \geq 3 jets where \geq 1 b jet
- ✗ Diphoton search
 2 photons, 1 lep, ≥ 3 jets where ≥ 1 b jet or

2 photons, \geq 4 jets where \geq 1 b jet

- ✗ Main backgrounds for bb search: tt + jets, single top, W+jets, multi-jet, Z +jets, diboson, ttV, ttH
 → tt+jets estimated with data
- ✗ Main backgrounds for H → WW* / TT: top pair, single top, ttW, ttZ, ttH, diboson → non-prompt lepton contributions estimated from data

BBAR FINAL STATE

 $tt \rightarrow bW + c(u)H \rightarrow b lv + c(u) bb$

 \rightarrow Large b multiplicity helps against top pair background

Categorization based on nb of b-jets (2,3, >3) \rightarrow CLs likelihood

MULTILEPTON FINAL STATE

tt → bW + c(u)H → bW + c(u) WW* ($\tau\tau$) multilepton final state 3 event categories based on reconstructed electrons, muons, taus → CLs likelihood

tHq

B(t→ cH) < 0.79 %

DIPHOTON FINAL STATE

tt \rightarrow bW + c(u)H \rightarrow bW + c(u) $\gamma\gamma$ Fit of the diphoton mass spectrum

B(t→ qH) < 0.79 %

BDT to discriminate signal and background → Kinematic variables and b-tag information used Profile likelihood method with Theta

BBAR FINAL STATE

BBAR FINAL STATE

Template fit on an artificial neural network with 2 input variables:

- 1. Invariant mass Higgs candidate
- 2. Distribution CSV discriminant

WW/ZZ/TT FINAL STATE

WW/ZZ/TT FINAL STATE

Cut based analysis in SS dilepton and trilepton final state, CLs method

CMS INFO

Charm tagging at CMS

