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Motivation
IceCube sensitive 
below several PeV

Sensitivity Gap in 
PeV – EeV region

Askaryan Radio 
detectors become 
sensitive close to 
the EeV region



Three different types of plasma 
are considered
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Leftover electrons from 
ionization:

Extension: O(30 cm)
Lifetime: O(1-20 ns)
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Shower front electrons:
Extension: RL = O(10 cm)

Lifetime: O(100ns)
Moving!

Leftover protons from 
ionization:

Wide extension: O(5m)
Lifetime: O(10-1000 ns) Ionization numbers come 

from Physical Chemistry 
research!

Figure from arXiv:1210.5140v2



RADAR scattering
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• Under-dense 
scattering:

• Over-dense 
scattering:

Radar frequency < Plasma 
Frequency

Reflection from the surface of the 
plasma tube

Radar frequency > Plasma 
Frequency

Scattering off of the individual 
charges in the plasma



RADAR return power 
estimation
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Transmitted 
power: Pt

Effective 
area of 
receiver: Aeff

Plasma scattering 
surface: σeff

Transmission over ¼ 
of a sphere: 1/(πR2)Re-scattering over 

a sphere: 1/(4πR2)

Bi-static RADAR configuration

Attenuation by the 
medium



RADAR return power 
estimation (single antenna)
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RADAR return power 
estimation (single antenna)
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RADAR return power 
estimation (single antenna)
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Open questions: The Plasma
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- How large is the over-dense plasma?

- What is the influence of skin-effects?

- What is the lifetime of the plasma?

- Is the plasma collision frequency low 
  enough?
 
                      Experimental verification
                      needed!

 



Radar scattering experiment
at TA-ELS
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Many thanks to the Chiba group and 
the Telescope Array Collaboration !

Aya
Matt
Kael



Experimental setup
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Experimental setup

10Early Configuration Later Configuration



Signal chain
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Radar scattering
Beam characteristics
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~109 (40 MeV) electrons
~ 40 PeV



Radar scattering
What do we see?
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Radar scattering
What do we see?
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Radar scattering
What do we see?
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V/Hz(1.55 GHz)

Time (100 ns bins)



Radar scattering
Interference and instrumental 

effects
- Accelerator noise interferes with our 
     transmit signal 

- Non-linear amplifier response

- Signal can be mimicked by these effects! 

- What if we look at a different frequency than 
our transmit frequency?
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Radar scattering
Air

No scaling 
observed
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Accelerator 
background



Radar scattering
Ice

Scaling with 
input power
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Accelerator 
background



Conclusions

- Modeling the RADAR scattering of 
  high-energy neutrino induced cascades   
  gives an energy threshold of several PeV.

- We performed a measurement to 
  determine the feasibility of this method.

- Obtained data hints toward a scattered 
  signal, analysis is ongoing.
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New detection method

M. Abou Bakr Othman et al, 
Proceedings 32nd ICRC, Beijing 2011 

If a RADAR signal can be bounced off of a neutrino 
induced cascade in ice, we have control over the signal 

strength!

Infrastructure already
available!



Over-dense scattering
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Skin Effects
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Model: Consider over-dense cylinders of equal density

Calculate skin depth 
for a collision less plasma:

Within 1 skin depth the 
amount of power absorbed 
and re-scattered equals:
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The over-dense radar cross-
section
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This approach: 
1. Include skin-effects directly into the radar cross-section.
2. Consider projected area and polarization angles for in/out-

going wave
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The under-dense radar 
cross-section
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The wave will scatter off of the individual 
electron given by the Thompson cross-section

We have to take into account for the phase lag 
of the individual electrons w.r.t. each other:
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