Radar detection of highenergy neutrino induced particle cascades in ice

> Krijn de Vries¹ Kael Hanson ^{2,3} Thomas Meures ^{2,3} Aongus O'Murchadha² Simona Toscano¹ IIHE Vrije Universiteit Brussel¹ UW -Madison² Université Libre de Bruxelles ³

UNIVERSITÉ ULB DE BRUXELLES

Motivation

Three different types of plasma are considered

Leftover electrons from ionization: Extension: O(30 cm) Lifetime: O(1-20 ns)

> Shower front electrons: Extension: $R_L = O(10 \text{ cm})$ Lifetime: O(100 ns)Moving!

Leftover protons from ionization: Wide extension: O(5m) Lifetime: O(10-1000 ns)

Ionization numbers come from Physical Chemistry research!

Laws, J. O. & Parsons, D. A. EOS 24, 452-460 (1

Proton mobility in ice

Marinus Kunst & John M. Warman

Interuniversitair Reactor Instituut, Mekelweg 15, 2629 JB Delft, The Netherlands

Ice is frequently taken as a model when factors controlling proton transport in hydrogen-bonded molecular networks are discussed. Such discussions have increased with the acknowledgement that proton transfer across cell membranes may play a significant part in energy conversion and storage in biological systems¹⁻⁴ and that this transfer may involve hydrogen-bonded chains spanning the membrane^{4.6}. However, there is still much

Figure from arXiv:1210.5140v2

RADAR scattering

 Over-dense scattering:

Radar frequency < Plasma Frequency

Reflection from the surface of the plasma tube

 Under-dense scattering:

Radar frequency > Plasma Frequency

Scattering off of the individual charges in the plasma

RADAR return power estimation Bi-static RADAR configuration

RADAR return power estimation (single antenna)

$$P_{r} = P_{t} \eta \frac{\sigma_{eff}(\lambda)}{\pi R^{2}} \frac{A_{eff}(\lambda)}{4\pi R^{2}} e^{-4R/L_{t}}$$
$$\lambda = 0.18 \text{ m}$$
$$\sigma_{eff}^{\text{max}} = 0.11 \text{ m}^{2}$$
$$\sigma_{eff}(\theta = 60^{\circ}, \phi = 60^{\circ}) = 1.6 \cdot 10^{-4} \text{ m}$$
$$L_{\alpha} = 1 \text{ km}$$
$$P_{\perp} = k_{t} T_{\perp} \Delta v$$

$$T_{\rm sys} = 325 \,\rm K$$
$$\Delta v = 100 \,\rm kHz$$

N antennas :

 $P_{Noise}(N) = N \cdot P(N = 1)$ $P_{Signal}(N) = N^{2} \cdot P(N = 1)$

RADAR return power estimation (single antenna)

$$P_{r} = P_{t} \eta \frac{\sigma_{eff}(\lambda)}{\pi R^{2}} \frac{A_{eff}(\lambda)}{4\pi R^{2}} e^{-4R/L_{\alpha}}$$
$$\lambda = 3.6 \text{ m}$$
$$\sigma_{eff}^{\text{max}} = 5.5 \text{ m}^{2}$$
$$\sigma_{eff}(\theta = 60^{\circ}, \phi = 60^{\circ}) = 1.2 \cdot 10^{-2} \text{ m}^{2}$$
$$L_{\alpha} = 1.4 \text{ km}$$

 $P_{\text{noise}} = k_b T_{\text{sys}} \Delta v$ $T_{\text{sys}} = 325 \text{ K}$ $\Delta v = 100 \text{ kHz}$

N antennas :

 $P_{Noise}(N) = N \cdot P(N = 1)$ $P_{Signal}(N) = N^{2} \cdot P(N = 1)$

RADAR return power estimation (single antenna)

$$P_{r} = P_{t} \eta \frac{\sigma_{eff}(\lambda)}{\pi R^{2}} \frac{A_{eff}(\lambda)}{4\pi R^{2}} e^{-4R/L_{\alpha}}$$

$$\lambda = 2.6 \text{ m}$$

$$\sigma_{eff}^{max} = 5.5 \text{ m}^{2}$$

$$\sigma_{eff}(\theta = 60^{\circ}, \phi = 60^{\circ}) = 1.2 \cdot 10^{-2} \text{ m}^{2}$$

$$L_{\alpha} = 1.4 \text{ lcm}$$

$$P_{noise} = k_{b}T_{sys} \Delta v$$

$$T_{sys} = 325 \text{ K}$$

$$\Delta v = 100 \text{ kHz}$$

$$N \text{ antennas :}$$

$$P_{Noise}(N) = N \cdot P(N = 1)$$

$$P_{Signal}(N) = N^{2} \cdot P(N = 1)$$

6

Open questions: The Plasma - How large is the over-dense plasma? - What is the influence of skin-effects? - What is the lifetime of the plasma? - Is the plasma collision frequency low enough?

Experimental verification needed!

Radar scattering experiment at TA-ELS

Many thanks to the Chiba group and the Telescope Array Collaboration !

Experimental setup

Experimental setup

Signal chain

11

Radar scattering Beam characteristics

Radar scattering What do we see?

Radar scattering What do we see?

Radar scattering What do we see?

15

Radar scattering Interference and instrumental effects

- Accelerator noise interferes with our transmit signal
- Non-linear amplifier response
- Signal can be mimicked by these effects!
- What if we look at a different frequency than our transmit frequency?

Radar scattering Air

17

Radar scattering

ce

Conclusions

- Modeling the RADAR scattering of high-energy neutrino induced cascades gives an energy threshold of several PeV.

- We performed a measurement to determine the feasibility of this method.

 Obtained data hints toward a scattered signal, analysis is ongoing. **New detection method** If a RADAR signal can be bounced off of a neutrino induced cascade in ice, we have control over the signal strength!

M. Abou Bakr Othman et al, Proceedings 32nd ICRC, Beijing 2011

Infrastructure already available!

Over-dense scattering

4 PeV electron plasma at 1 GHz

Skin Effects

Model: Consider over-dense cylinders of equal density

The over-dense radar crosssection

This approach:

- **1.** Include skin-effects directly into the radar cross-section.
- 2. Consider projected area and polarization angles for in/outgoing wave

$$\sigma_{od} = A_{plasma} \times f_{skin} \times f_{geom}$$

$$A_{Plasma}^{i} \approx L_{i}r_{i}$$

$$f_{skin}^{i+1} = (1 - f_{skin}^{i})(1 - e^{-x/\delta_{i}})$$

$$f_{geom} = (e_{t} \cdot e_{c})(e_{c} \cdot e_{r})$$

$$\sigma_{od} = \sum_{i} L_{i}r_{i}(1 - f_{skin}^{i})(1 - e^{-x/\delta_{i}})(e_{t} \cdot e_{c})(e_{c} \cdot e_{r})$$

The under-dense radar cross-section

The wave will scatter off of the individual electron given by the Thompson cross-section

$$\sigma_T = \left(\frac{m_e}{m_p}\right)^2 0.665 \cdot 10^{-28} \text{ m}^2$$

We have to take into account for the phase lag of the individual electrons w.r.t. each other:

$$\sigma_{ud} = \sum_{i=1}^{N} \sigma_T \cos(kx)$$
$$k = \frac{2\pi}{\lambda_d} x = |\vec{x_1} - \vec{x_i}| + |\vec{x_2} - \vec{x_i}|$$