Aharonov-Bohm oscillations of bosonic matter-wave beams in the presence of disorder and interaction

R. Chrétien, J. Dujardin, C. Petitjean, and P. Schlagheck

Département de Physique, University of Liege, 4000 Liège, Belgium

Abstract

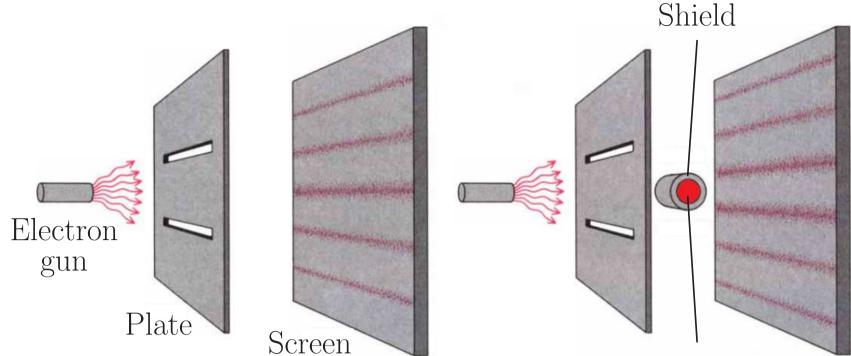
We study the one-dimensional (1D) transport properties of an ultracold gas of Bose-Einstein condensed atoms through Aharonov-Bohm (AB) rings. Our system consists of a Bose-Einstein condensate (BEC) that is outcoupled from a magnetic trap into a 1D waveguide which is made of two semiinfinite leads that join a ring geometry exposed to a synthetic magnetic flux ϕ . We specifically investigate the effects both of a disorder potential and of a small atom-atom contact interaction strength on the AB oscillations. The main numerical tools that we use for this purpose are a mean-field Gross-Pitaevskii (GP) description and the truncated Wigner (tW) method. We find that a correlated disorder suppress the AB oscillations leaving thereby place to weaker amplitude, half period oscillations on transmission, namely the Aronov-Al'tshuler-Spivak (AAS) oscillations. The competition between disorder and interaction leads to a flip of the transmission at the AB flux $\phi = \pi$. This flip could be a possible preliminary signature of an inversion of the coherent backscattering (CBS) peak. Our study paves the way to an analytical description of the inversion of that peak.

Aharonov-Bohm effect

• Potentials act on charged particles even if all fields vanish

[Y. Aharonov and D. Bohm, PR **115**, 485-491 (1959)]

[Y. Imry and R.A. Webb, *Scient. Am.* **260**, 56 (1989)]



Higher order interferences

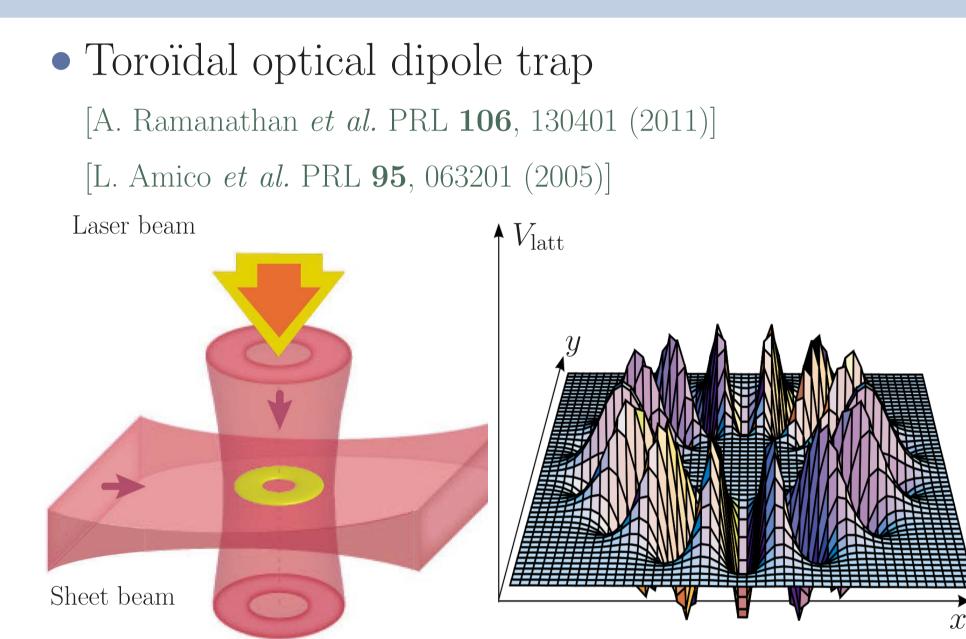
- Presence of higher harmonics of weak intensity
- Diagrammatic approach of the problem

[Ihn T., *Semiconductor nanostructures*, Oxford (2010)] The reflection probability is given by

$$\mathcal{R} = |r_0 + r_1 e^{i\Phi} + r_1 e^{-i\Phi} + \dots|^2$$

= $|r_0|^2 + |r_1|^2 + \dots$
+ $4|r_0| \cdot |r_1| \cos \Lambda \cos \Phi + \dots$

Aharonov-Bohm rings

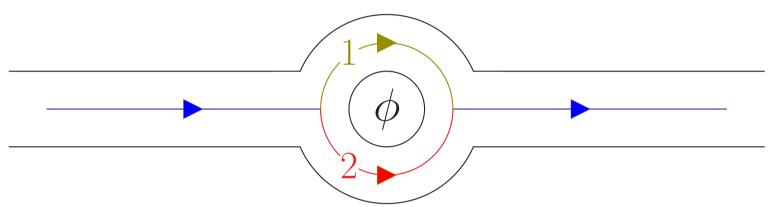


Intersection of two red-detuned beamsConnection to two waveguides

- Magnet
- \bullet Interference pattern shifted due to the presence of vector potential ${\bf A}$ with depashing

$$\Delta \varphi = k \Delta l + \frac{e}{\hbar} \oint_{\phi} \mathbf{A} \cdot d\mathbf{l} = k \Delta l + 2\pi \frac{\phi}{\phi_0}$$

with $\phi_0 = h/2e$ the magnetic flux quantum • Same effect within a two-arm ring



- Oscillations in transport properties due to interferences of partial waves crossing each arm of the ring
- Transmission periodic w.r.t. the AB flux ϕ $T = |t_1 + t_2|^2 = |t_1|^2 + |t_2|^2 + 2|t_1| \cdot |t_2| \cos \Delta \varphi$ with period ϕ_0

Aharonov-Bohm oscillations

$$+2|r_1|^2\cos(2\Phi)+\dots$$
 (3)

(1)

(2)

with Λ the disorder-dependent phase accumulated after one turn with $\phi = 0$.

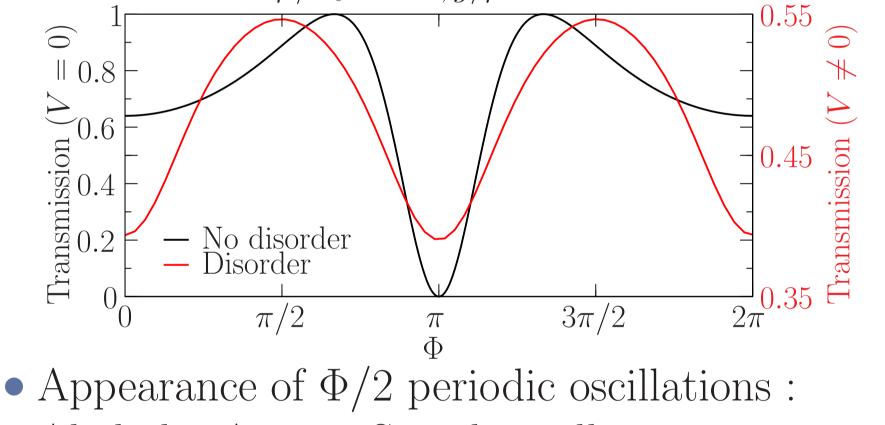
(1) no Φ -dependence, classical contributions

(2) Φ -periodicity, AB contribution, damped to zero when averaged over the disorder

(3) $\Phi/2$ -periodicity, AAS contribution, robust to averages over the disorder

AAS oscillations

• Averages over the disorder suppress Aharonov-Bohm oscillations $\mu/E_{\delta} = 0.75, g/\mu = 0$



Theoretical description

- Ring geometry connected to two semi-infinite homogeneous leads
- Perfect condensation of the reservoir ($T = 0 \,\mathrm{K}$) with chemical potential μ
- Discretisation of a 1D Bose-Hubbard system [J. Dujardin *et al. Phys. Rev. A* **91**, 033614 (2015)]

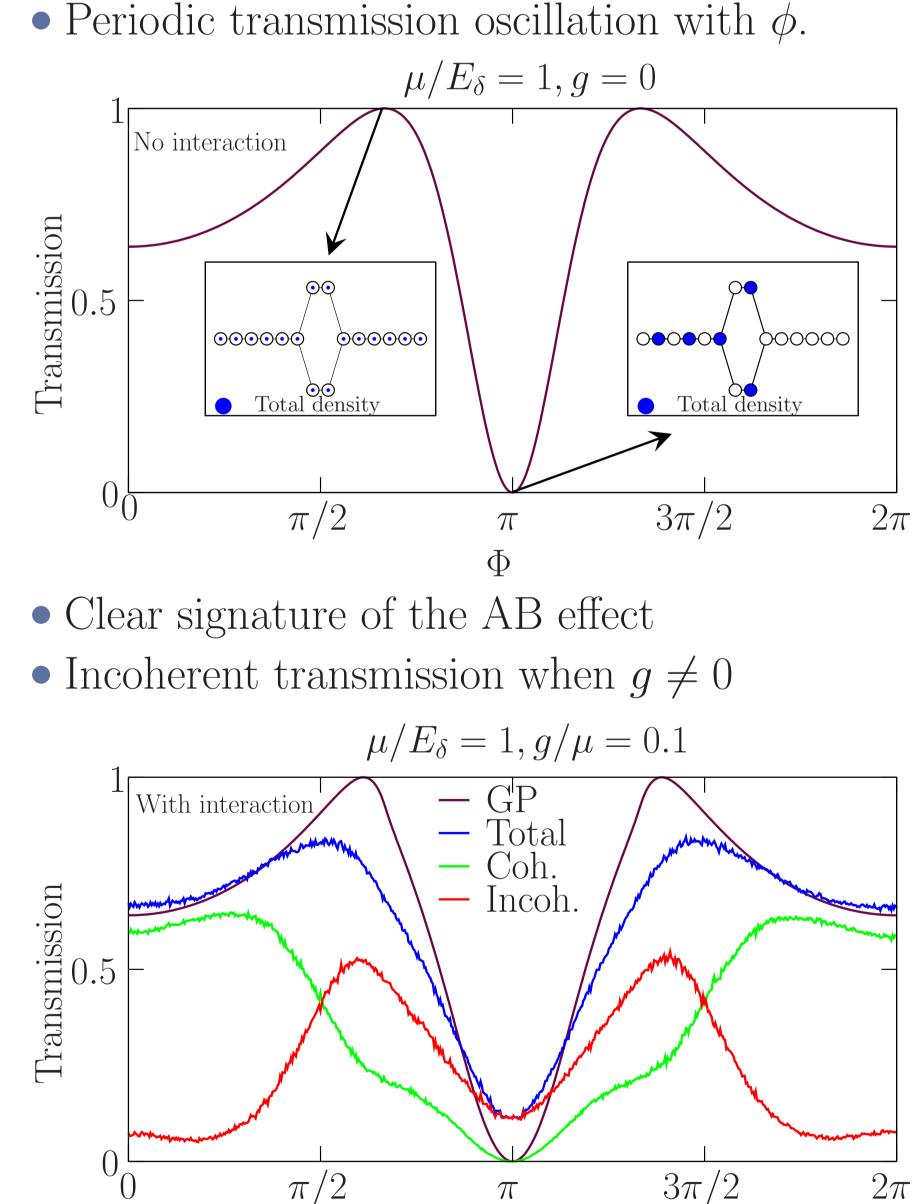
$$\begin{array}{c} \mathcal{L} & \mathcal{S} \\ \hline & & \mathcal{K}(t) \\ \alpha_{\mathcal{S}} & \alpha_{\mathcal{S}} & \mathbf{k}(t) \\ \hline & & \mathbf{k}(t) \\ \alpha_{\mathcal{S}} & \mathbf{k}(t) \\ \hline & & \mathbf{k}(t) \\ \hline &$$

• Hamiltonian

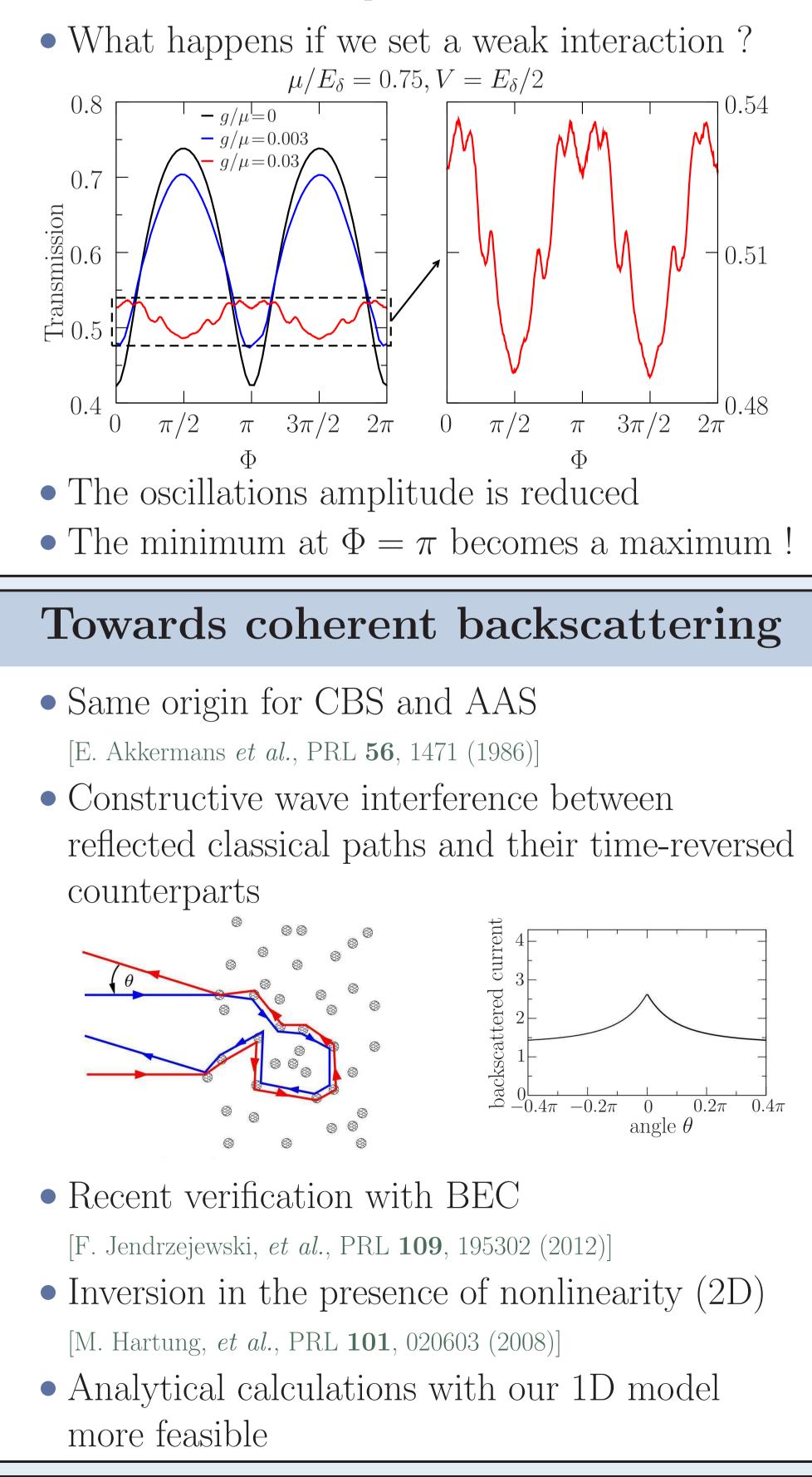
$$\hat{H} = \hat{H}_{\mathcal{L}} + \hat{H}_{\mathcal{LR}} + \hat{H}_{\mathcal{R}} + \hat{H}_{\mathcal{S}}$$

where

$$\hat{H}_{\mathcal{L}} = \sum_{\alpha \in \mathcal{L}} \left[E_{\delta} \hat{a}_{\alpha}^{\dagger} \hat{a}_{\alpha} - \frac{E_{\delta}}{2} \left(\hat{a}_{\alpha-1}^{\dagger} \hat{a}_{\alpha} + \hat{a}_{\alpha+1}^{\dagger} \hat{a}_{\alpha} \right) \right]$$
$$\hat{H}_{\mathcal{LR}} = -\frac{E_{\delta}}{2} \left(\hat{a}_{-1}^{\dagger} \hat{a}_{0} + \hat{a}_{0}^{\dagger} \hat{a}_{-1} + \hat{a}_{n}^{\dagger} \hat{a}_{n+1} + \hat{a}_{n+1}^{\dagger} \hat{a}_{n} \right)$$
$$\hat{H}_{\mathcal{R}} = \left[\sum_{\alpha \in \mathcal{L}} \left(E_{\delta} + V_{\alpha} \right) \hat{a}_{\alpha}^{\dagger} \hat{a}_{\alpha} - \frac{E_{\delta}}{2} \left(\hat{a}_{\alpha-1}^{\dagger} \hat{a}_{\alpha} + \hat{a}_{\alpha+1}^{\dagger} \hat{a}_{\alpha} \right) \right]$$



Altshuler-Aronov-Spivak oscillations



$\alpha \in \mathcal{R} + g \hat{a}_{\alpha}^{\dagger} \hat{a}_{\alpha}^{\dagger} \hat{a}_{\alpha} \hat{a}_{\alpha} \hat{a}_{\alpha} \Big]$ $\hat{H}_{\mathcal{S}} = \kappa(t) \hat{a}_{\alpha_{\mathcal{S}}}^{\dagger} \hat{b} + \kappa^{*}(t) \hat{b}^{\dagger} \hat{a}_{\alpha_{\mathcal{S}}} + \mu \hat{b}^{\dagger} \hat{b}$ with :

- â_α (b) and â[†]_α (b[†]) the annihilation and creation operators at site α (of the source),
 E_δ ∝ 1/δ² the on-site energy,
 V_α the disorder potential at site α,
 g the interaction strength,
 N → ∞ the number of Bose-Einstein
- condensed atoms within the source, • $\kappa(t) \rightarrow 0$ the coupling strength, which tends to zero such that $N|\kappa(t)|^2$ remains finite.
- Resonant transmission peaks move with g and disappear if g is strong enough $\mu/E_{\delta} = 1$ With interaction Transmission .0 .5 Total $-g/\mu = 0$ $g/\mu = 0.05$ $q/\mu = 0.1$ $q/\mu = 0.15$ 0.0750.15 $\pi/2$ $3\pi/2$ 2π • More incoherent particles created as $q \uparrow$

Computational resources have been provided by the Consortium des Equipements de Calcul Intensif (CÉCI), funded by the Fonds de la Recherche Scientifique de Belgique (F.R.S.-FNRS) under Grant No. 2.5020.11

http://www.pqs.ulg.ac.be

rchretien@ulg.ac.be