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Fröhlich solid state polaron

Quasiparticle consisting of an electron and the polar-
ization cloud that it drags along while moving in a po-
lar crystal
•m→ me electron mass.
• ~ωq → ~ωLO dispersion relation for longitudinal-

optical phonons.
•Vq interaction amplitude for the electron to

emit/absorb LO phonons.

BEC polaron

Quasiparticle deriving from the interaction of an impu-
rity with the Bogoliubov excitations of a Bose-Einstein
condensate.
•m→ mI mass of the impurity.
• ~ωq dispersion for the Bogoliubov excitations of the

Bose-Einstein condensate.
•Vq interaction amplitude for the impurity to

emit/absorb a Bogoliubov excitation.

“BCS polaron”

Quasiparticle deriving from the interaction of an im-
purity with the collective excitations of a Fermi super-
fluid.
•m→ mI mass of the impurity.
• ~ωq dispersion for the collective excitations of the

Fermi superfluid.
•Vq interaction amplitude for the impurity to

emit/absorb an excitation.

Effective field theory for Fermi superfluids

Ultracold fermions interacting via a s-wave contact potential governed by the inter-
action parameter (kFaFF )−1. (aFF fermion-fermion scattering length)
(kFaFF )−1< 0→ BCS (kFaFF )−1 = 0→ unitarity (kFaFF )−1> 0→ BEC
−→ EFT describes the system in terms of the pairing field Φ
−→ Basic assumption: Φ varies slowly in time and space
−→Complete EFT action
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(we have analytic expressions for all the coefficients [1])

Collective excitations

• the pair field is rewritten as the sum of mean-field and fluctuation contributions as
Φ(r, τ ) = ∆ + ϕ(r, τ ) .

• an expansion up to second order leads to the quadratic fluctuation action
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• the spectrum of collective excitations is determined by the solution of
det (M(q, ω)) = 0 after the transformation iΩn→ ω

• up to second order in q the dispersion for the collective excitations is given by
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mB(λ) ≡ mF/
√
λ can be interpreted as the interaction-dependent mass of the

fermion pairs. In the BEC limit λ→ 1/4 and mB(λ)→ 2mF .

Weak coupling regime: T = 0 perturbation theory

The Hamiltonian for the system becomes then
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• gIB → impurity-fermion pair (∼ boson) cou-
pling constant (function of the impurity-boson
scattering length aIB).
•N0 → number of particles in the condensate.

• εq ≡ ~q2
2mB(λ) → dispersion for the free bosons

We start from an unperturbed eigenstate of Ĥ0 of the form |ψk〉 |∅〉 consisting of a free
impurity described by a plane-wave eigenfunction ψq = eik·r/

√
V and the vacuum

state for the phonons |∅〉 and calculate the energy up to second order corrections.
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Results
Polaronic coupling constant

The energy up to second order in perturbation can be written in terms of the polaronic
coupling constant α that is defined as

α ≡ aIB
a∗BBξ

where a∗BB = 1/16πn0v
2
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2
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with the BEC polaron case (where α ≡
aIB
aBBξ

), a∗BB is thus expected to give a measure
of the scattering length between the fermion
pairs.
⇒ in the BEC limit the mean-field predic-
tion a∗BB = 2aFF is correctly obtained.

Effective mass

The effective mass is calculated by using the definition

1

m∗
=

1

~2

∂2
(
E

(2)
k

)
∂k2

∣∣∣∣
k→0

•The polaronic coupling constant increases monotonically when going from the BCS
towards the BEC regime.
•A maximum is found for the ratiom∗/mI for small positive values of the interaction

parameter (kFaFF )−1.
• For a fixed value of (kFaFF )−1 both α and m∗ increase with aIB.

Conclusions

•The problem of an impurity interacting with the collective excitations of a Fermi
superfluid was mapped on the Fröhlich Hamiltonian.
•The dispersion relations for the collective excitations of a fermionic superfluid were

calculated in the framework of an effective field theory [1] suitable to describe su-
perfluid Fermi gases in a wide range of the {T, (kFaFF )−1}−space.
•The behavior of the polaronic coupling constant and of the effective mass was anal-

ysed across the BEC-BCS crossover for different regimes of the interaction be-
tween the impurity and the fermion pairs. Interesting features are observed in the
near BEC regime.
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