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Exchange bias

When cooling a ferromagnetic / antiferromagnetic bilayer in an external
magnetic field below the Néel temperature TN, an unidirectional shift of
the hysteresis loop is found due to the coupling between both layers. This
effect is used in GMR read heads under the form of spin valves.
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In most polycrystalline stacks also a training effect can be seen, i.e. the
coercivity and bias field decrease for an increasing number of hysteresis
cycles n. For n = 1, the athermal component of the training effect con-
tains the largest contribution.

Objective

We proof, by reproducing experimental data[1] for an exchange bi-
ased Co(30nm)/CoO(3nm) bilayer, that we can include these 2 effects in
MuMax3 by considering the presence of pinned and rotatable grains
in the AFM layer. We also demonstrate there can be an asymmetry in
the reversal mechanism between the descending branch for n = 1 and
further hysteresis loops.
[1] T. Dias, E. Menndez, H. Liu, C. Van Haesendonck, A. Vantomme, K. Temst, J. E. Schmidt, R. Giulian, J. Geshev, Rotatable anisotropy driven training effects in exchange
biased co/coo films, Journal of Applied Physics 115 (2014) 243903.

Solving micromagnetism with MuMax3

In micromagnetism the evolution of the magnetisation M⃗ (⃗r, t) in an
effective field H⃗e f f is determined by the Landau - Lifshitz equation
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with α the dimensionless damping constant and γ the gyromagnetic ra-
tio. MuMax3[2], which is a GPU - accelerated open sourcemicromagnetic
simulation program, allows us to solve this equation for a ferromagnetic
system by using a finite difference discretisation.

Néel domain wall in FM nanowire magnetic vortex
[2] A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-Sanchez, B. Van Waeyenberge, The design and verification of mumax3, AIP Advances 4 (2014) 107133.
website: http://mumax.github.io

Micromagnetic model

Thepolycrystalline Co andCoO layers are eachdivided into grainswith an
average grain size of 12 nm using a Voronoi tessellation. The anisotropy
axes of the FM grains are distributed around the field cooling direction ac-
cording to a normal distribution with a standard deviation of 10°.
The AFM grains are divided into 2 types, pinned and rotatable, accord-
ing to a ratio of 3:7 respectively. Their anisotropy axes are randomly dis-
tributed in plane. No Zeeman or demagnetization energy was taken into
account for the AFM layer.

Unidirectional shift

Pinned AFM grains, which have a high anisotropy constant and so are
almost frozen, cause the unidirectional shift of the hysteresis loop due
to their coupling with the FM layer. Using an exchange stiffness of
Apin = 6.9× 10−12 J/m and Arot = 1.1× 10−11 J/m at the interface, we find that
our bias field and coercivity agrees well with the experimental data.
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Athermal training effect

After field cooling, the magnetization of the AFM grains is randomly dis-
tributed in the field cooling direction. Rotatable AFM grains have a
low anisotropy constant (KU = 2.0× 106 J/m3) and so rotate together with
the FM layer during the hysteresis loop. Especially those grains with an
anisotropy axis almost perpendicular to the field cooling direction
contribute to the athermal training effect as explained below.
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Suppose the magnetisation of such a rotatable AFM grain is at position
(a) after field cooling and that the FM rotates coherently. If the FM has a
small initial positive ⟨my,FM⟩ component, theAFMgrainwill rotate counter-
clockwise in the descending branch of the first hysteresis loop and jump
irreversibly towards position (b). After the first hysteresis cycle, the
AFM grain relaxes towards position (c) and so does not return to its ini-
tial position. This results in a non closed AFM hysteresis loop for n = 1.
For n > 1 the grain reversibly switches between (b) and (c). As now
⟨my,AFM⟩> 0, the AFM applies a net torque on the FM layer which results in
a lower coercivity and bias field. For FM domains in which ⟨my,FM⟩ < 0,
the reasoning is similar.

field cooled n = 2, Bext = 100 mT n = 2, Bext = - 45 mT

top row: AFM layer, bottom row: corresponding FM layer


