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Abstract

Detection and quantification of trends of key quantities in terms of a set of ‘predictor’ variables is a

common task for model building and experimental planning in many areas of science, such as astronomy,

geology, ecology and also in nuclear fusion science. The standard way to handle the corresponding

regression analysis problem is by means of a linear or power-law regression function and ordinary least

squares (OLS) to perform the fit. However, OLS is a very simple technique that is not suitable in the

presence of complex uncertainties on the measured data. Its assumptions can be overly simplifying, e.g.

when the measurements originate from multiple diagnostics or experiments, when the predictor variables

are affected by considerable uncertainty, or when the data contain outliers. This often leads to erroneous

estimates of the regression parameters, which, moreover, greatly depend on the adequateness of the

proposed regression function. Furthermore, the measurements used in the regression analysis are often

averages over a time window or over multiple occurrences of the phenomenon under study. Effectively,

this means that potentially valuable information in the data is discarded. Whenever a measured quantity

is subject to considerable fluctuation or measurement noise it can be very beneficial to consider the

probability distribution of the quantity instead of its average. We have developed the method of geodesic

least squares regression (GLS) that does not depend on the overly simplifying assumptions of OLS,

by exploiting the full probability distribution of the regression variables. In the present contribution, the

method is applied to regression analysis of plasma energy confinement, resulting in strongly improved

robustness with respect to uncertainty in both the data set and in the regression model.
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Scaling laws

Scaling laws in fusion science:

Evaluate theoretical predictions

Estimate parametric dependencies

Extrapolate to future devices

Terminology:

Scaling law: scale to larger sizes, magnetic fields, etc.

Often power law: y = b0xb1
1 xb2

2 . . . xbp
p

Regression analysis: probabilistic/statistical framework for
estimation with confidence intervals

Scaling law estimation ⊂ regression analysis ⊂ parameter
estimation

Applications in astronomy, geology, ecology, . . .
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Challenges for fusion scaling laws

Large (non-Gaussian?) stochastic uncertainties (noise)
Systematic measurement uncertainties
Uncertainty on response (y ) and predictor (xj ) variables
Uncertainty on regression model (nonlinear?)
Near-collinearity of predictor variables
Atypical observations (outliers)
Heterogeneous data and error bars
Logarithmic transformation in power laws:

ln(y) = ln(b0) + b1 ln(x1) + b2 ln(x2) + . . .+ bp ln(xp)
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The minimum distance approach

Need robust regression considering all uncertainties

Parameter estimation→ distance minimization:
expected↔ measured:

Ordinary least squares (OLS)
Maximum likelihood (ML) / maximum a posteriori (MAP):
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Measurement→ probability distribution

Minimum distance estimation: Hellinger divergence,
Kullback-Leibler divergence, . . .

Firm mathematical basis: information geometry
=⇒ regression on probabilistic manifolds
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Information geometry
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The Gaussian probability space
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Estimation through distance minimization
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Rao geodesic distance (GD)

Minimize GD between modeled (pmod) and observed (pobs)
distributions
To be estimated: σobs, β0, β1, . . . , βm
iid data: minimize sum of squared GDs

=⇒ geodesic least squares (GLS) regression
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Numerical experiment: L-H power threshold

Log-linear model:

Pthr = β0n̄ β1
e B β2

t S β3

=⇒ ln Pthr ≈ lnβ0 + β1 ln n̄e + β2 ln Bt + β3 ln S

Pthr: L-H power threshold (MW)
n̄e: central line-averaged electron density (1020 m−3)
Bt: toroidal magnetic field (T )
S: plasma surface area (m2)

ITPA Power Threshold Database: 2002 version
(J. Snipes et al., IAEA FEC 2002, CT/P-04)

Data + error bars from 7 tokamaks: > 600 entries
pmod ≈ N (µmod, σ

2
mod):

µmod = lnβ0 + β1 ln n̄e + β2 ln Bt + β3 ln S

σ2
mod = β2

1σ
2
ln n̄e

+ β2
2σ

2
ln Bt

+ β2
3σ

2
ln S
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Synthetic regression models

ln Pthr = lnβ0 + β1 ln n̄e + β2 ln Bt + β3 ln S

β0: 1,1.1, . . . ,20

β1, β2, β3: 0.1,0.2, . . . ,2

Percentage errors:

Pthr: 15%

n̄e: 20%

Bt: 5%

S: 15%

10 trials per parameter set
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Experimental results

Percentage error on parameter estimates
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Energy confinement scaling in tokamaks

τE = β0 Iβ1
p Bβ2

t n̄β3
e Pβ4

loss Rβ5 κβ6εβ7 Mβ8
eff

τthr: thermal energy confinement time (s)

Ip: plasma current (MA)

Bt: toroidal magnetic field (T )

n̄e: central line-averaged electron density
(1020 m−3)

Ploss: thermal power loss (MW)

R: plasma major radius (m)

κ: plasma elongation

ε: inverse aspect ratio

Meff: effective atomic mass

ITPA Global H-mode Confinement Database
(D.C. McDonald et al., Nucl. Fus. 47, pp. 147–174, 2007)

‘Standard set’: > 1200 entries from 6 tokamaks

12



Comparison of trends

τE = β0 Iβ1
p Bβ2

t n̄β3
e Pβ4

loss Rβ5 κβ6εβ7 Mβ8
eff

Log-linear

Meth. β0 β1 β2 β3 β4 β5 β6 β7 β8

OLS 0.030 0.80 0.57 0.39 -0.70 2.3 0.52 0.33 0.34
GLS 0.035 0.58 0.77 0.44 -0.78 2.5 0.90 0.84 0.42

Nonlinear

Meth. β0 β1 β2 β3 β4 β5 β6 β7 β8

OLS 0.034 0.56 0.53 0.56 -0.69 2.7 0.74 0.85 0.15
GLS 0.042 0.50 0.77 0.37 -0.74 2.5 0.99 1.0 0.45
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Results

τE = β0 Iβ1
p Bβ2

t n̄β3
e Pβ4

loss Rβ5 κβ6εβ7 Mβ8
eff

Weaker dependence on Ip

Stronger dependence on Bt

Stronger dependence on κ

Stronger dependence on ε (minor radius)

ITER predictions:

Log-linear:
OLS: 5.6 s
GLS: 4.2 s

Nonlinear:
OLS: 5.9 s
GLS: 3.7 s
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Conclusions and future work

Geodesic least squares regression: flexible and robust

Consistent results

Easy to use, fast optimization

Application to scaling laws in fusion, astronomy, ecology, etc.

To be implemented in publicly accessible software package
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