SEARCHFOR A HIGH-MASS SCALAR IN THE $ZZ \rightarrow \ell^+ \ell^- + MISSING TRANSVERSE ENERGY FINAL STATE$

HUGO DELANNOY ON BEHALF OF THE CMS COLLABORATION

Search for $H \to ZZ \to \ell^+ \ell^- \nu \bar{\nu}$

Characteristics:

ULB

- High branching ratio: $BR(ZZ \to 2\ell 2\nu) \sim 6 \times BR(ZZ \to 4\ell)$
- Reduced background at high M_{ZZ} : better control than $ZZ \rightarrow 2\ell 2q$

Signal modelling is computed with interference with the SM Higgs for several mass points :

• $gg \to H$

• $qq \rightarrow H + 2jets$ (VBF)

NON-RESONANT BACKGROUND ESTIMATION

The non-resonant di-lepton background is also estimated using data-driven methods, based on the $e\mu$ final state.

$$\begin{split} N_{\mu\mu} &= \alpha_{\mu} \times N_{e\mu}, \qquad N_{ee} = \alpha_{e} \times N_{e\mu} \\ \text{with} \quad \alpha_{\mu} &= \frac{N_{\mu\mu}^{SB}}{N_{e\mu}^{SB}}, \qquad \alpha_{e} = \frac{N_{ee}^{SB}}{N_{e\mu}^{SB}} \end{split}$$

The N^{SB} are the numbers of events in a top-enriched sample of e^+e^- , $\mu^+\mu^$ and $e^{\pm}\mu^{\pm}$ where we asked $E_T^{\text{miss}} > 70 \,\text{GeV}$, b-tagged events and events in the sidebands : $40 \text{ GeV} < M_{\ell \ell} < 70 \text{ GeV}$ or $110 \text{ GeV} < M_{\ell \ell} < 200 \text{ GeV}$

PRECISE MODELING OF THE ZZ BACKGROUND

The ZZ represents our most important irreducible background. Therefore, precise modelling is done:

m_н [GeV]

Figure 1: Limits on $H \rightarrow VV$ production from run 1 [1]

Search for a narrow resonance in two types of interpretations:

- Extra Singlet Model: new electroweak scalar singlet H mixing with the SM scalar h(125):
 - couplings of h and H rescaled by C and C', such as: $C^2 + C'^2 = 1$
 - $\mu' = C'^2 (1 B_{new}), \qquad \Gamma' = \Gamma_{SM} \frac{C'^2}{1 B_{new}}$
- 2 Higgs Doublet Model

• $qq \rightarrow ZZ$:

- NLO electroweak corrections as a function of Mandelstam variables and quark flavors
- NNLO QCD corrections as a function of M_{ZZ}
- $gg \rightarrow ZZ$:
 - NNLO/LO k-Factor as a function of M_{ZZ}

Figure 3: Transverse Mass after event selection [2]

FIRST RESULTS AT 13 TEV FOR $2.3fb^{-1}$

Pre-selection:

- di-lepton trigger
- $\geq 2e \text{ or } \geq 2\mu$
 - $p_T > 25 \, \text{GeV}$
 - $|\eta| < 2.5(e)/2.4(\mu)$
 - tight ID
 - tight Iso
 - $-|M_{\ell\ell}-91| < 15 \,\mathrm{GeV}$
- $p_T^Z > 55 \,\mathrm{GeV}$
- 3^{rd} lepton veto
- *b*-tag veto
- $\Delta \phi_{j,\text{MET}} > 0.5 \text{ for } p_T^j > 30 \text{ GeV}$

DRELL-YAN BACKGROUND ESTIMATION

We use data-driven method to estimate this background. This allows us to take into account the fake MET due to the misreconstruction of jets in Drell-Yan events and to check/correct the simulation 2.3 fb⁻¹ (13 TeV)

Therefore, we need a process with:

- independent events
- with more statistics

This search for a heavy scalar has been performed using a data sample corresponding to an integrated luminosity of $2.3fb^{-1}$ at 13 TeV. The Figure 4 shows the M_T distributions in our different production modes: the gluon-fusion (the 0-jets) and ≥ 1 jet) and VBF categories correspondingly. The top row plots shows the ee channel, while the bottom row is for the $\mu\mu$ selection.

Figure 4: Final M_T distributions. [2]

The distributions correspond to a 750 GeV scalar of 250 GeV width scenario. The data show no particular deviation from the SM background predictions. Therefore limits have been derived on the production cross section of a heavy scalar. We interpret those in the case of ESM (see Figure 5) and 2HDM models.

Figure 5: Upper limits at 95% CL set on the gluon-fusion (left) and VBF (right) production cross sections of a heavy scalar as function of its mass under the hypothesis that $B_{new} = 0$ and for various values of the mixing parameter C' [2].

We take $\gamma + jets$ events. To that extent, dedicated photon triggers have been set.

An important point of this process is the reweighting of the p_T^{γ} to match the p_T^Z .

REFERENCES

[1] CMS collaboration. Search for a Higgs Boson in the Mass Range from 145 to 1000 GeV Decaying to a Pair of W or Z Bosons. arXiv:1504.00936, 2015.

[2] CMS collaboration. Search for a heavy scalar boson decaying into a pair of Z bosons in the 2'2n final state. *HIG-PAS-16-001*, 2016.