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1. What is topological superconduc�vity?

2. The mean‐field approach... 3.... or the Bethe ansatz approach

• Superconductivity: Electrons at the Fermi level form Cooper pairs
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The Hamiltonian is Richardson-Gaudin integrable with eigenstates exactly 
given by a Bethe ansatz wavefunction  

where the parameters in the wavefunction behave as pair energies and are 
coupled through the RG equations

• Topological: Phases have a nontrivial topological structure

• Example: 2D chiral p-wave superconductor

~ product of Cooper pairs

Approximate the ground state by a coherent mean-field BCS state  

• Variationally optimize (strongly correlated) wave function
• Breaks particle-number symmetry: introduce chemical potential
• BUT fluctuations can be neglected in thermodynamic limit

•          : Topologically nontrivial phase

BEC BCS

•          : Phase transition - Quasiparticle spectrum becomes gapless

•          : Topologically trivial phase

4. Introducing a system‐environment interac�on
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• Bath/environment allows for exchange of Cooper pairs = Breaks particle-number symmetry
• Interpolates between mean-field theory for finite systems and exact theory
• Does not break integrability =  Can be exactly solved for large systems!

Read-Green points mark phase transition

5. What happens to the phase transi�on? 5. Compare with mean‐field theory

• System gapless at Read-Green
   points
• Density fluctuations allow for 
   series of gaps
• Gaps open up due to system-
   bath coupling

• Instead of phase transition 
   the particle number increases
• Resonances (linked with zero-
   energy excitations) 
• System remains in 
   topologically non-trivial phase

• Read-Green resonances

Occupation numbers

Excitation gap
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Does not change pairing symmetry

No definite particle number

6. Conclusions
Due to the existence of zero-energy excitations, the system-bath coupling 
introduces avoided crossings at the phase transition, accompanied by 
Read-Green resonances in the low-energy and -momentum states. 

• Small system-bath coupling (         )
   Resonances at Read-Green points 
   undetected by mean-field theory

• Large system-bath coupling (         ) 
   mean-field theory becomes exact
   (bath coupling = mean-field interaction)

• Resonances spread out with increasing 


