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Conclusions 
 The finite temperature effective field theory for 

fermionic superfluids is extended to the case of 
rotating Fermi gases. 

 A non-trivial physical result is the renormalization 
of the effective mass for the fermion pair. It is in 
agreement with the prediction of the functional 
renormalization group theory. 

 The vortex phase diagrams exhibit close similarity 
with the results of the coarse grained BdG method.  

 The lowest critical frequencies calculated in both 
EFT and BdG approaches lie close to each other 
despite the fact that our calculation lies within the 
picture where the effective mass of “dressed” pairs 
is renormalized, while in the BdG treatment, 
masses of pairs are non-renormalized.  

 This coincidence is remarkable and promising to 
throw a bridge between these two paradigms. 
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In the present work, superfluid Fermi gases are described in terms of an effective field 
theory (EFT) [1] for a macroscopic wave function representing the field of condensed 
pairs, analogous to the Ginzburg – Landau theory for superconductors. We have 
established how rotation modifies this effective field theory [2], by deriving it on the 
basis of the microscopic Hamiltonian of Fermi gas in the rotating frame of reference.  
The rotation leads to the appearance of an effective vector potential, and the coupling 
strength of this vector potential to the macroscopic wave function depends on the 
interaction strength between the fermions, due to a renormalization of the pair 
effective mass in the effective field theory. The mass renormalization is in agreement 
with results of functional renormalization group theory. We use the macroscopic wave 
function description to study vortices and the critical rotation frequencies to form 
them. The derived phase diagrams for vortex states are in good agreement with 
results of the Bogoliubov – De Gennes theory and with experimental data. 

Area of vortex stability 

We start from the path integral partition 
function 

with the microscopic action of interacting fermions 

The single-particle Hamiltonian in the rotating frame of reference 

The Hubbard-Stratonovich transformation, the integration out fermion fields, 
and the gradient expansion lead to the effective field action 

The coefficients are the same as in [1].   

This term appears due to rotation, which breaks the inversion symmetry.   

Finite temperature EFT [2] Functional renormalization 
group theory at T = 0 [3] 
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EFT predicts the renormalization of the pair effective mass in line with the functional 
renormalization group theory.  

Area of stability for vortices at 
different numbers of particles per unit 
length in a cylindrically symmetric 
confinement potential [2] 
 

Phase diagram for one- and two-
vortex states in the variables 
𝜔 𝜔0, 1 𝑘𝐹𝑎𝑠    [2] 

There can be two critical rotation frequencies for the vortex formation. 
At low rotation frequencies, vortices are not stable. When increasing w, vortices can 
become stable starting from a lower critical rotation frequency wc,1. 
There may exist also an upper critical rotation frequency wc,2 such that the vortex 
state turns back to the superfluid state for 𝜔𝑐,1 < 𝜔 < 𝜔𝑐,2, since the radius of the 
superfluid state falls down with an increasing rotation frequency. 
The obtained phase diagrams are in line with the BdG calculation [4]. 
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In the phase diagrams, the transition lines between 
the regimes with different numbers of vortices bend 
over leading to reentrant behavior of the critical 
rotation frequencies as a function of temperature. This 
reentrant dependence has a clear physical sense.  
 
On one hand, at higher temperatures, the radius of the 
superfluid phase decreases. On the other hand, the 
healing length increases when the temperature rises 
towards Tc.  
 
When the healing length is sufficiently large, the 
existence of stable vortices becomes energetically non-
favorable with respect to the superfluid state.  
 
The obtained phase diagrams exhibit a clear similarity 
to those obtained in Refs. [4, 5]. 
 
The critical rotation frequency is in a good agreement 
with the results of the coarse grained BdG method [5].  


