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Magnetic confinement fusion
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JET tokamak, situated 

in Oxfordshire UK, is 

currently the world’s 

largest operational 

tokamak device

On of the most promising routes towards nuclear

fusion on earth magnetic confinement of a hot

hydrogen plasma in a tokamak device

High confinement (H-mode) regime in tokamaks is

accompanied by an edge instability:

Edge-localized modes (ELMs)

Type I ELMy H-mode is the reference operating

scenario for next-step fusion device ITER



Edge-localized modes (ELMs)

ELMs intense, short duration, repetitive events that result in sudden 

expulsion of energy and particles from the plasma edge 

Beneficial for impurity control

Degrade confinement + large ‘uncontrolled’ ELMs will cause intolerable  

transient heat loads on the plasma-facing components in ITER

In this work, a classification scheme for ELM types is presented which:

• Effectively incorporates inherent stochasticity of ELMs and the

substantial measurement uncertainties

• Provides an automated, fast, high-accuracy and standardized

classification for ELM types which can considerably reduce the effort of

ELM experts in identifying ELM types

• Demonstrates that the distributions of ELM properties contain more

information than the mean values alone
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METHODOLOGY
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Pattern recognition

Signature recognition

Facial recognition

Patterns of 

constellations
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Speech recognition

Texture patterns

“The assignment of a physical event to one of 

several pre-specified categories” --- Duda & Hart

A pattern reflects an object, process or event

During recognition (or classification), categories 

(classes) are assigned to the events (or objects)



K-nearest neighbor (kNN) classifier
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To classify an unknown event:

• Compute distance to events in training data

• Identify k nearest neighbors

• Use class labels of the nearest neighbors to determine class label 

of the test event (majority vote)

1-NN 

classification

3-NN 

classification



Information geometry
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Fusion plasmas            Measurement uncertainties + fluctuations

Measurement            Probability distribution

Information geometry            Family of probability distributions                                

Riemannian manifold



Rao geodesic distance (GD)
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A geodesic curve on a manifold M is locally the shortest path between 

points (probability distributions)

𝑬𝒖𝒄𝒍. 𝒅𝒊𝒔𝒕 𝑷𝟏, 𝑸𝟏 < 𝑬𝒖𝒄𝒍. 𝒅𝒊𝒔𝒕 𝑷𝟐, 𝑸𝟐

𝐆𝐃 𝑷𝟏, 𝑸𝟏 > 𝑮𝑫 𝑷𝟐, 𝑸𝟐

GD is a natural, intrinsic distance measure on the manifold of 

probability distributions



GD-based kNN classifier
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k-nearest neighbors of a ‘test’ probability distribution function (PDF) are 

the ‘training data’ PDFs that have the k smallest GDs to the test PDF



EXPERIMENTS &

RESULTS
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Dataset
100 plasma discharges from the JET tokamak (operating with the carbon wall)

Type I ELMs = 69 discharges

Type I ‘high frequency’ (HF) ELMs = 5 discharges

Type III ELMs = 26 discharges

Analysis restricted to time intervals stationary plasma conditions
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The global plasma parameters

considered for each discharge 

are: 

• Toroidal field = 𝐵𝑡 (𝑇), 
• Plasma current = 𝐼𝑝 𝑀𝐴 ,

• Line-integrated edge density = 

𝑛𝑒 1019𝑚−2 ,
• Input power = 𝑃𝑖𝑛𝑝𝑢𝑡 𝑀𝑊 ,

• Average triangularity = 𝛿𝑎𝑣𝑔
• Gas fuelling = Γ𝐷2 1022𝑠−1



GD-based kNN classification using global plasma 

parameters
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Predictors Distance 

measure

k Classification success rate (%)

I III Avg

𝜇 Euclidean 1 89.2 69.2 84.0

𝜇, 𝜎 Euclidean 1 89.2 69.2 84.0

𝝁, 𝝈 GD 1 95.9 84.6 93.0

We assume that the error bars associated with each plasma parameter

pertain to a statistical uncertainty in the data, specifically that it represents

a single standard deviation

Underlying distribution of the global plasma parameters is Gaussian

with the measurement = mean (𝝁) and its error bar = standard deviation (𝝈)



Extraction of ELM waiting times
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A threshold-based ELM detection

algorithm is used for extracting

the ELM waiting times

Gaussian and 2-parameter Weibull

distributions are fit to the ELM waiting

times

Free parameters of the distributions

Maximum likelihood estimation (MLE)



ML estimates for distribution fits to ELM waiting 

times
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Gaussian 

PDF

2-parameter 

Weibull PDF



GD-based kNN classification using ELM waiting 

times

Predictors Distance 

measure

k Classification success rate (%)

I III Avg

𝜇 Euclidean 1 95.9 84.6 93.0

𝜇, 𝜎 Euclidean 1 95.9 84.6 93.0

𝝁, 𝝈 GD 1 97.3 96.2 97.0

𝛽, 𝛼 Euclidean 1 94.6 80.8 91.0

𝛽, 𝛼 GD 1 97.3 92.3 96.0
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CONCLUSIONS
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• Complete distributions of plasma

quantities contain more information than

mere averages

• GD is an apt similarity measure for

comparing probability distributions

• A fast, standardized classification scheme

for ELM types is presented which:

 reduces the effort of ELM experts in

identifying ELM types

 can complement phenomenological

approaches

• The presented method is generic and can

also be applied to other classification

problems in fusion and astronomy


