

Identification of edge-localized instabilities in nuclear fusion plasmas using pattern recognition techniques

A. Shabbir^{1,2}, G. Hornung¹ and G. Verdoolaege^{1,3}

¹Department of Applied Physics, Ghent University, Belgium ²MPI for Plasma Physics, Garching, Germany ³LPP–ERM/KMS, Brussels, Belgium

> General Scientific Meeting 2016 Belgian Physical Society

Magnetic confinement fusion

On of the most promising routes towards nuclear fusion on earth \longrightarrow magnetic confinement of a hot hydrogen plasma in a tokamak device

High confinement (H-mode) regime in tokamaks is accompanied by an edge instability:

Edge-localized modes (ELMs)

Type I ELMy H-mode is the reference operating scenario for next-step fusion device ITER

JET tokamak, situated in Oxfordshire UK, is currently the world's largest operational tokamak device

Edge-localized modes (ELMs)

ELMs -----> intense, short duration, repetitive events that result in sudden expulsion of energy and particles from the plasma edge

Degrade confinement + large 'uncontrolled' ELMs will cause intolerable transient heat loads on the plasma-facing components in ITER

In this work, a classification scheme for ELM types is presented which:

- Effectively incorporates inherent stochasticity of ELMs and the substantial measurement uncertainties
- Provides an automated, fast, high-accuracy and standardized classification for ELM types which can considerably reduce the effort of ELM experts in identifying ELM types
- Demonstrates that the distributions of ELM properties contain more information than the mean values alone

METHOROLOGY

Pattern recognition

"The assignment of a physical event to one of several pre-specified categories" --- Duda & Hart

A pattern reflects an object, process or event

During recognition (or classification), categories (classes) are assigned to the events (or objects)

Speech recognition

Facial recognition

Patterns of constellations

Texture patterns

Signature recognition

K-nearest neighbor (kNN) classifier

To classify an unknown event:

- Compute distance to events in training data
- Identify k nearest neighbors
- Use class labels of the nearest neighbors to determine class label of the test event (majority vote)

Information geometry

Rao geodesic distance (GD)

A geodesic curve on a manifold *M* is locally the shortest path between points (probability distributions)

 $\begin{aligned} & Eucl.\,dist\,(P_1,Q_1) < Eucl.\,dist\,(P_2,Q_2) \\ & & \text{GD}(P_1,Q_1) > GD(P_2,Q_2) \end{aligned}$

GD is a natural, intrinsic distance measure on the manifold of probability distributions

GD-based kNN classifier

k-nearest neighbors of a 'test' probability distribution function (PDF) are the 'training data' PDFs that have the *k* smallest GDs to the test PDF

EXPERIMENTS & RESULTS

Dataset

100 plasma discharges from the JET tokamak (operating with the carbon wall)

Type I ELMs = 69 discharges Type I 'high frequency' (HF) ELMs = 5 discharges Type III ELMs = 26 discharges

Analysis restricted to time intervals -----> stationary plasma conditions

The global plasma parameters considered for each discharge are:

- Toroidal field = $B_t(T)$,
- Plasma current = I_p (*MA*), •
- Line-integrated edge density = • n_{ρ} (10¹⁹ m^{-2}),
- Input power = P_{input} (*MW*),
- Average triangularity = δ_{avg} •
- Gas fuelling = Γ_{D_2} (10²²s⁻¹) •

GD-based kNN classification using global plasma parameters

We assume that the error bars associated with each plasma parameter pertain to a statistical uncertainty in the data, specifically that it represents a single standard deviation

Underlying distribution of the global plasma parameters is Gaussian with the measurement = mean (μ) and its error bar = standard deviation (σ)

Predictors	Distance measure	k	Classification success rate (%)		
			I.	Ш	Avg
μ	Euclidean	1	89.2	69.2	84.0
μ, σ	Euclidean	1	89.2	69.2	84.0
μ, σ	GD	1	95.9	84.6	93.0

Extraction of ELM waiting times

A threshold-based ELM detection algorithm is used for extracting the ELM waiting times

Gaussian and 2-parameter Weibull distributions are fit to the ELM waiting times

Free parameters of the distributions Maximum likelihood estimation (MLE)

ML estimates for distribution fits to ELM waiting times

GD-based kNN classification using ELM waiting times

Predictors	Distance measure	k	Classification success rate (%)		
			l I	III	Avg
μ	Euclidean	1	95.9	84.6	93.0
μ, σ	Euclidean	1	95.9	84.6	93.0
μ, σ	GD	1	97.3	96.2	97.0
β,α	Euclidean	1	94.6	80.8	91.0
β,α	GD	1	97.3	92.3	96.0

CONCLUSIONS

