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Building band structures for ultracold atoms in optical lattices

optical lattice cold atoms

confinement

additional ingredients
(laser coupling, shaking, rotation...)

Building a Hamiltonian

Loading atoms into the corresponding band structure

How will the atomic cloud behave,

if the bands are topological?

Reviews: Dalibard et al. Rev. Mod. Phys. ʻ11 and Goldman et al. Rep. Prog. Phys. ʼ14



Loading atoms into the bands:  measuring geometry vs topology

Wave-packet preparation : local in k-space

Probe: The local dispersion of the band (i.e. band velocity)

The local geometry of the band, 

as captured by the Berry curvature 

Experiments: Jotzu et al. (Nature ʻ14), Duca et al. (Science ʼ15), Fläschner et al. (arXiv:1509.05763)



Loading atoms into the bands:  measuring geometry vs topology

Wave-packet preparation : local in k-space

Filling the band uniformly in k-space

Probe: The local dispersion of the band (i.e. band velocity)

The local geometry of the band, 

as captured by the Berry curvature 

Probe: The global topology of the band

Example: the first Chern number of the band 

Experiments: Jotzu et al. (Nature ʻ14), Duca et al. (Science ʼ15), Fläschner et al. (arXiv:1509.05763)

Experiments: Aidelsburger et al. (Nat. Phys. ʻ15), Wu et al. (arXiv:1511.08170)



Hall conductivity and center-of-mass observables

Solid-state physics: filling a band with electrons

Transport equation for the current density

(TKNN formula)

quantized Hall conductivity (IQHE)

electric field
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Solid-state physics: filling a band with electrons

Transport equation for the current density
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On the measurement of Chern numbers 
through center-of-mass responses

H. M. Price, O. Zilberberg, T. Ozawa, I. Carusotto, N. G., arXiv:1602.01696



Semiclassics and the modified density of states

• Let us consider a wave-packet prepared in a band E(k) with curvature Ω(k)

: electric field/linear gradient

: weak (perturbing) magnetic field

• The semiclassical equations of motion are given by [~ = e = 1]

ṙ =
∂E(k)

∂k
− k̇ ×Ω(k),

k̇ = −E − ṙ ×B,

• For a completely filled band, the particle density is given by

n =
1

V

∑
k

=

∫
T2
D(k)d2k, D(k) : phase-space density of states

• Care is required in the presence of both Ω and B [see Xiao et al. PRL ’05, Bliokh PLA ’06]

n =

∫
T2
D(k)d2k =

1

(2π)2

∫
T2

(1 +B ·Ω)d2k

[the phase-space volume element ∆R∆K is constant for canonical variables !]
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• For a completely filled band, the particle density is given by

n =
1

V

∑
k

=

∫
T2
D(k)d2k, D(k) : phase-space density of states

• Care is required in the presence of both Ω and B [see Xiao et al. PRL ’05, Bliokh PLA ’06]

n =

∫
T2
D(k)d2k =

1

(2π)2

∫
T2

(1 +B ·Ω)d2k

[the phase-space volume element ∆R∆K is constant for canonical variables !]



Center-of-mass responses

• Summary of the configuration :

: electric field/linear gradient

: weak (perturbing) magnetic field

• Setting B = B 1z , the particle density is given by

n =
1

(2π)2

∫
T2

(1 +B ·Ω)d2k =
AMBZ

(2π)2
+
B

2π
ν −→ n = n(ν;B) ! [Streda]

• Setting the “electric” field E = Ey 1y , the Hall current density is given by TKNN :

jx =
Ey

2π
ν −→ jx = jx(ν) but jx 6= jx(B) ... Hall conductivity plateaus !

• The transverse center-of-mass velocity is given by

vxc.m. =
jx

n
=

(
Ey

AMBZ
2π

+Bν

)
ν ≈

2π

AMBZ
Eyν −

(
2π

AMBZ

)2

EyB (ν)2
[
|2πBν|
AMBZ

�1

]
• There are two types of quantized responses :

linear response (∼ Ey) + non-linear response (∼ EyB)
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Center-of-mass responses
• The transverse center-of-mass velocity is given by

vxc.m. =
jx

n
=

(
Ey

AMBZ
2π

+Bν

)
ν ≈

2π

AMBZ
Eyν −

(
2π

AMBZ

)2

EyB (ν)2
[
|2πBν|
AMBZ

�1

]
• Simple check (homework !) : square lattice with flux per plaquette Φtot = 1/5

Picture A : Φ = 1/5 and Φpert = 0 −→ vxc.m.(A)

Picture B : Φ = 1/4 and Φpert = −1/20 −→ vxc.m.(B) = vxc.m.(A)

This simple equivalence is possible thanks to the modified density of states !

• Full numerical simulations for Φ = 1/4 and Φpert =±10%× Φ
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4D Physics with Cold Atoms

H. M. Price, O. Zilberberg, T. Ozawa, I. Carusotto, N. G., PRL 115, 195303 (2015)



Brief warm-up : Topological structures in 4D

• The curvature Ω of a given band (defined over the FBZ) is a two-form

Ω =
1

2
Ωµνdkµ ∧ dkν 6= 0 for dim(FBZ) ≥ 2 (no curvature in 1D)

• Taking the square produces a four-form

Ω2 = Ω ∧ Ω =
1

4
ΩµνΩγδ dkµ ∧ dkν ∧ dkγ ∧ dkδ 6= 0 for dim(FBZ) ≥ 4

• Topology in 2D : the first Chern number

ν1 =
1

2π

∫
FBZ

Tr Ω dim(FBZ) = 2

• The first Chern number is associated with the 2D quantum Hall effect (FBZ = T2)

• Topology in 4D : the second Chern number

ν2 =
1

8π2

∫
FBZ

Tr Ω2 dim(FBZ) = 4

• The second Chern number is associated with the 4D QH effect (FBZ = T4)
see Zhang and Hu Science 2001 and Avron et al. PRL 1988 about 4D systems with TRS
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4D quantum Hall effect from semiclassics

• We consider a wave-packet in a 4D Bloch band E(k) with Berry curvature Ωµν(k)

• We write the semiclassical equations of motion in D = 4 spatial dimensions

ṙµ(k) =
∂E(k)

∂kµ
− k̇νΩµν(k); µ, ν = x, y, z, w (1)

k̇µ = −Eµ−ṙνBµν ; Bµν = ∂µAν − ∂νAµ see Xiao et al. RMP ’10 ; Gao,Yang,Niu PRB ’15

• Let us combine these Eqs. (1) repeatedly :

ṙµ(k) =
∂E(k)

∂kµ
+ EνΩµν(k) + ṙγBνγΩµν(k)

=
∂E(k)

∂kµ
+ EνΩµν(k) +

(
∂E(k)

∂kγ
+ EδΩ

γδ(k) + ṙαBδαΩγδ(k)

)
BνγΩµν(k)

≈
∂E(k)

∂kµ
+ EνΩµν(k) +

∂E(k)

∂kγ
BνγΩµν(k) + Ωγδ(k)Ωµν(k)EδBνγ + . . .

→ Combining E and B produces a term ∼ Ω2

• Topological response in the current density of a filled band ?
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=
∂E(k)

∂kµ
+ EνΩµν(k) +

(
∂E(k)

∂kγ
+ EδΩ
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ṙµ(k) =
∂E(k)

∂kµ
− k̇νΩµν(k); µ, ν = x, y, z, w (1)
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Topological responses in 4D

• The velocity in a state k is

ṙµ(k) ≈
∂E(k)

∂kµ
+ EνΩµν(k) +

∂E(k)

∂kγ
BνγΩµν(k) + Ωγδ(k)Ωµν(k)EδBνγ + . . .

• Let us fill the band and compute the total current density jµ = (1/V )
∑

k ṙ
µ(k)

• We have to evaluate the modified density of states :

(1/V )
∑
k

−→
1

(2π)4

∫
T4

[
1 +

1

2
BµνΩµν +

1

64

(
εαβγδBαβBγδ

)(
εµνλρΩµνΩλρ

)]
d4k

• The total current density jµ = (1/V )
∑

k ṙ
µ(k) is given by

jµ = Eν
1

(2π)4

∫
T4

Ωµνd4k +
ν2

4π2
εµαβνEνBαβ (µ = x, y, z, w)

where ν2 =
1

8π2

∫
T4

Ω2 =
1

4π2

∫
T4

ΩxyΩzw + ΩwxΩyz + ΩzxΩywd4k

• There are two types of quantized responses : linear (∼ E) + non-linear (∼ EB)

• For a TRS system, we recover the topological-field-theory prediction

jµ =
ν2

4π2
εµαβνEνBαβ [Ref : Qi, Hughes, Zhang PRB ’08]
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• For a TRS system, we recover the topological-field-theory prediction

jµ =
ν2

4π2
εµαβνEνBαβ [Ref : Qi, Hughes, Zhang PRB ’08]



Introducing a 4D framework

• We want to investigate the transport equation using ultracold atoms
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4π2
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ΩxyΩzw + ΩwxΩyz + ΩzxΩywd4k

• In order to have ν2 6= 0, we look for a minimal 4D system with Ωzx,Ωyw 6= 0

−→ fluxes Φ1,2 in the x−z and y−w planes : two Hofstadter models.
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hopping along a synthetic (internal-state) dimension
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in Science Sept. 2015

• Physical realization with cold atoms in a 3D optical lattice : Easy !
• A superlattice along z + resonant x−z-dependent time-modulation
• Raman transitions between internal states with recoil momentum along y
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hopping along a synthetic (internal-state) dimension
see Celi et al PRL ‘14
Mancini et al.(LENS) and Stuhl et al.(NIST) 
in Science Sept. 2015

• Topological band structure :

The energy spectrum displays a low-energy flat topological band with ν2 = −1
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Probing the transport equations

• Let us come back to our transport equation, with Ωzx,Ωyw 6= 0

jµ = Eν
1

(2π)4

∫
T4

Ωµνd4k +
ν2

4π2
εµαβνEνBαβ , ν2 =

1

4π2

∫
T4

ΩzxΩywd4k

• We now choose an electric field E = Ey1y and a magnetic field Bαβ = Bzw

hopping along a synthetic (internal-state) dimension
see Celi et al PRL ‘14

where

(simply tune the Raman lasers!)

• The transport equations yield two non-trivial contributions :

jw = Ey
1

(2π)4

∫
T4

Ωwyd4k : linear response along w (∼ 2D QH effect)

jx =
ν2

4π2
EyBzw : non-linear response along x (∼ 4D QH effect)

• Predictions have been validated through numerical simulations [νexp
2 ≈−1.07]
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The center-of-mass drifts in a 4D topological system

• Reminder : the center-of-mass velocity is related to the current density via

vc.m. = j/n

• The current density is

jµ = Eν
1

(2π)4

∫
T4

Ωµνd4k +
ν2

4π2
εµαβνEνBαβ ,

• The particle density is [using the modified density of states !]

n =
1

(2π)4

∫
T4

[
1 +

1

2
BµνΩµν +

1

64

(
εαβγδBαβBγδ

)(
εµνλρΩµνΩλρ

)]
d4k

−→ vc.m. = j/n may have complicated dependence on the band topology !

• Simple situation : Bµν 6= 0 in a plane without curvature (Ωµν = 0)

n =
AzxMBZA

yw
MBZ

(2π)4
=

1

Vcell
−→ vc.m. = jVcell

• Pathological situation : Bµν 6= 0 in a plane with curvature (Ωµν 6= 0)

We find situations where jµ = jµ(ν2) but vµc.m. 6= vµc.m.(ν2) !

• Here we show results for Bzw 6= 0 and Ωzw = 0 : simple case !
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The center-of-mass drift : Numerical simulations

• The predicted center-of-mass drift along x (2nd-Chern-number response) :

vxc.m. = jxVcell = jx (4a× 4a× a× a) , for Φ1 = Φ2 = 1/4

=
( ν2

4π2
Ey ×Bzw

)
× 16a4 ≈ 2a/TB , TB = 2π/aEy ≈ 50ms

• We have calculated the COM trajectory for Ey=0.2J/a and Bzw/2π=−1/10
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• From these simulations : ν2≈−0.98

The 4D responses are of the same order
as the effects reported in the 2D measurement [Aidelsburger et al ’15] !
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Conclusions

• Center-of-mass observables have a much richer dependence on topological
invariants than previously discussed

• The particle density is related to topological invariants (Streda)

• Ultracold gases are suitable platforms to probe these intriguing topological
responses (e.g. EM effects in COM observables)

• 4D quantum Hall physics (e.g. 2nd Chern numbers) is accessible using ultracold
gases extended by synthetic dimensions

• Not discussed : 4D QH physics can also be explored with photonics
(see Ozawa, Price, Goldman, Zilberberg, Carusotto, PRA 93, 0438270 2016)

• Cold atoms offer a platform to study interaction effects in 4D topological bands
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