

Ion pair dissociation of highly excited carbon clusters

Thibaut Launoy

BPS Gent: 20/05/2016

Plan

□ Introduction

- □ Experimental setup
 - $\hfill\square$ Results of ion-pair dissociation of $C_n{}^{q_+}$ clusters

D Theoretical methodologies

- □ *Ab initio* calculations
- □ Statistical approach
- **Conclusions and perspectives**

Ion pair dissociation mechanisms

- **C** Relaxation of an excited molecule into a **cation anion pair** of fragments
- □ Various processes leading to ion pair dissociation/formation :
 - $\Box \quad O_2 \text{ into } O^+ ({}^4S) + O^- ({}^2P) \text{ by photo-dissociation :}$

□ Baklanov *et al.* 2008

Direct population of an ion pair state with 3 photons

- □ NO_2 into $NO^+(X {}^{1}\Sigma^+) + O^-({}^{2}P)$ by predissociation :
 - D Poullain *et al.* 2013

- Indirect population via Rydberg states by pre-dissociation
- > Ion pair states generate **avoided crossings** with neutral states in the inner and outer regions

Introduction

Ion pair dissociation

□ Little information on ion pair dissociation from cations:

- □ First observation of an ion pair from a cation : $SO_2^+ \rightarrow SO^{++} + O^-$ by Dujardin *et al.* 1989
- □ No potential energy curves for those multi-charged systems
- □ No quantitative interpretation of the measurements

- **Competition between the ion pair and other relaxation processes:**
 - □ Ionisation (dissociative or not)
 - **D** Radiative relaxation
 - Dissociation without anion emission : « Normal » fragmentation
 - **D** ...

> Our work: Comparison between ion pair dissociation and « normal » dissociation

4/11

The AGAT setup

- \Box High velocity collisions (v=2.25 a.u / 5.10⁶ m s⁻¹):
 - $\Box \quad C_n^- \text{ projectiles}:$
 - **G** graphite sputtering source
 - accelerated and sent to the Tandem facility (Orsay, France)
 - $\Box \qquad \text{by a stripper gas}: C_n^- \to C_n^+$
 - □ In the AGAT (AGrégat-ATome) : C_n^+ clusters collide with helium atoms.
 - Deflection of the fragments according to their charge over mass ratio and sent to silicon detectors.
- □ Coincidence measurements of all fragments emitted from the collision allowing the unambiguous identification of the ion pair relaxation.

$$C_n^{q+} + \{He\} \rightarrow C_p^- + C_{n-p}^{(q+1)+}$$

Measured cross section and Branching ratio

- First results concerning ion pair dissociation of C_n species
- First results of ion-pair dissociation into 3+/and 4+/-

Ion pair dissociation compared to dissociation without anion emission

- For some clusters : the dissociation into ion pair is weakly dependent on the cluster size and charge
- Exception for C_2^+
- \Box Can we understand the difference between C_2^+ and C_3^+ ?

□ Can we theoretically predict these branching ratios ?

Introduction

Ab initio calculations

Lowest dissociation limits : MRCI (+Davidson correction) with ACV6Z basis set

□ Excited dissociation limits : CASSCF method with VTZ basis set due to convergence problems.

- ✓ 50 low-lying ${}^{4}A_{2}$ electronic states arising from various molecular dissociation channels : Σ^{-} , Δ and Γ molecular symmetry.
- ✓ Mulliken population analysis : the ionic channels of C⁺⁺ (¹S) / C⁻ (⁴S[°]).
- Number of states and avoided crossings is enormous : the use of traditionnal methodologies for BR and cross sections is almost impossible

Statistical approach

- **\Box** Rate of ion pair dissociation at internal energy E^* : $\frac{nb \ of \ ion \ pair \ states}{nb \ of \ other \ dissociation \ states}$
 - All final dissociative states are considered based on the atomic NIST database and calculated using Wigner and Witmer correlation rules.
- Populated states in the collision depend on the dipole excitation selection rules.

 \Box $\Delta S = 0$; $\Delta \Lambda = 0, \pm 1$; $u \leftrightarrow g$

- Branching ratio is based on the internal energy E* of the carbon cluster and the normalized probability f(E*) to produce this energy E* during the collision (Béroff *et al.* 2013):
 BR = \$\int_0^{\infty} BR(E^*)f(E^*)dE^*\$
- \Box The excited states lying near the ground state of C_n^+ are taken into account :
 - **Q** Removing electrons from the incident beam C_n^- produced ground and excited states of C_n^+ .

- Count the number of dissociative states below excited energy E*
- 2) Count the number of states that could be populated by selection rules
- 3) Count the number of states emerging from the ion pair channels
- 4) Integrate over the internal energy distribution $f(E^*)$
 - Branching Ratio

8/11

Statistical approach: results

C_{2}^{+}

- \checkmark Theoretical value:
 - From C_2^+ (GS) : BR = 4.7 10⁻⁵
 - From C_2^+ (excited) : $BR = 1.0 \ 10^{-5}$
- ✓ Experimental value:

>
$$BR =$$

3.0 10⁻⁵ (±60%)

C_{3}^{+}

✓ Theoretical value: → From C_3^+ (GS) : $BR = 2.6 \ 10^{-4}$ → From C_3^+ (excited) : $BR = 2.0 \ 10^{-4}$ ✓ Experimental value: → $BR = 5.3 \ 10^{-4} \ (\pm 30\%)$

9/11

Energetics involved

 \Box C₂⁺

 \Box C₃⁺

Only two dissociation channels

Ion pair dissociation requires only 22 eV 5 ion pair channels

CCSD(T) calculations by Diaz-Tendero et al. (2005)

Conclusions - Perspectives

$C_n^{q+} + \{He\} \rightarrow C_p^- +$	$C_{n-p}^{(q+1)+}$
---	--------------------

□ Experimental

- ✓ Cross section and Branching ratio for ion pair dissociation in highly excited C_n^{q+} clusters (n≤5, q≤3)
 - $\label{eq:definition} \square \qquad \text{Difference between C_2^+ and C_3^+}$
- □ Theoretical
 - ✓ Ab initio :
 - $\Box \qquad \text{Potential energy curves of molecular } C_2^+$
 - $\Box \qquad C^{++} \ / \ C^{-} \ channel \ visible$
 - ✓ Simple Statistical model:
 - **D** Branching ratio in agreement with experiments
 - \Box Explanation of the difference between C_2^+ and C_3^+
- \Box Apply the same approach for $C_n N^{(q+)}$ systems
 - □ Predict the BR value?
- **D** Experiments on other carbon clusters

Aknowledgements

Service de Chimie Quantique et Photophysique (Bruxelles):

- ✤ Nathalie Vaeck
- Jacky Liévin *
- Jérome Loreau *

Institute of Condensed Matter and Nanosciences / Nanoscopic Physics (Louvain-la-Neuve):

Institut des Sciences Moléculaires (Orsay):

- Karine Béroff *
- Thomas Pino *
- * Thejus Mahajan
- Maëlle Bonnin *
- Géraldine Féraud *
- Thi Kim Cuong Le *

✤ Arnaud Le Padellec

Institut de Recherche en Astrophysique et Planétologie (Toulouse):

Institut de Physique Nucléaire (Orsay) :

- Marin Chabot **
- Guillaume Martinet
- Sandra Bouneau **
- Nicolas de Séréville **
- Fairouz Hammache **
- ** Luc Perrot
- Aurélie Jallat *
- Thibaut Hamelin
- Florian Geslin **

Financial support:

