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Outline

• The Standard Model and its limits
• The Search for Hidden Particles
• Neutrino physics at SHiP and high granularity

layers
• Downstream calorimetry at SHiP and high

precision layers
• Conclusion
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The Standard Model

• Complete, renormalisable theory which looks like it
could be consistent all the way up to the Planck
scale O(1018 GeV)

• Fully consistent with nearly all experimental data
• Some problems remain however:

• Gauge hierarchy problem: why is the Higgs so light?
• Neutrino oscillations: why are neutrinos so light?

Where does their mass come from?
• Inconsistency with the current state of the universe:

baryogenesis in the early universe requires more CP
violation

• Is unable to explain gravity and the existence of
dark matter
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Beyond the Standard Model: where to sail?

New physics is either:
1. Too heavy to have been

seen (∼TeV or more:
SUSY neutralino,
resonant leptogenensis
HNL...)

2. Too weakly interacting to
have been seen (much
less than even neutrinos:
hidden sector mediator,
oscillation leptogenensis
HNL...)
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Beyond the Standard Model: what to look for (examples)

Heavy neutral leptons: Axion-like-Particles:

● Right-handed 
neutrinos

● Explain 
neutrino mass 
scale (type I 
seesaw)

● Allow 
leptogenesis

● Generic (pseudo-) 
Nambu-Goldstone 
boson emerging 
from broken global 
symmetries

● May offer a 
relaxation solution 
to the hierarchy 
problem

● May mediate 
interactions to a 
Hidden Sector
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Beyond the Standard Model: how to sail?

• SHiP/NA67 experiment approved in March
2024

• Use SPS accelerator proton to fire protons on
target

• Facility already under construction
• Data taking begins in 2031

6/30



Beyond the Standard Model: the SHiP experiment

• High-intensity beam dump experiment: 6 × 1020 protons on target over 15 years
• Globally unique physics potential: large D and B meson fluxes
• Sensitivity to a broad variety of Feebly Interacting Particles (FIPs)

• HNLs
• Axion-like-particles (ALPs)
• Dark scalar Higgs-like particles
• Dark photons
• Light dark matter (LDM)

• Unprecedented measurements of ντ , F4 and F5, flavour physics, lepton universality and
many more

• Will operate in a zero-background environment
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SHiP: where can we sail?

HNL

ALP→𝛾𝛾

Extra scalar

Dark photon
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Interlude: introduction to calorimetry

• Particle detectors determine what (particle
identification), where (tracking), when (timing),
how (physics process) and how much (energy
measurement).

• Calorimeters are generalists, they can measure each
of these variables with an emphasis however on what
and how much

• Calorimeters are destructive detectors and function
with some combination of sensitive and passive
material

• They come in two greater variants: electromagnetic
calorimeters (ECAL) and hadronic calorimeter
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Interlude: introduction to calorimetry

• They have unique particle identification
capabilities

• Signal identification and background
suppression

• Their relative energy resolution improves
with greater energy ∝ 1√

E

• Calorimeters are challenging because
• Great diversity in available technologies

(scintillators, liquid noble gases,
semiconductors, cherenkov...)

• Mechanical integration is difficult
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Calorimetry at SHiP

• SHiP is equipped with two calorimeter systems
• The SND@SHiP calorimeter

• Used in the observation of LDM and ν

• Embedded into the muon shield
• The Particle identification detector calorimeter

• Sampling ECAL with excellent angular resolution for neutral final states
• HCAL to discriminate muons and hadrons in a wide momentum range
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ντ physics at SND@SHiP

• Experimental signature of a ντ :
• Double-kink topology from ντ interaction and τ

decay
• Missing pT carried by outgoing ντ

• BDF/SHiP produces a very large ντ sample through
Ds → τντ with σstat < 1 % for all neutrino flavours

• Will mark the beginning of ντ phenomenology!
• Measurement accuracy is determined by systematic

uncertainty ∼ 5 % in all ν fluxes, dominated by
uncertainty in the cascade charm production in the
thick SHiP tungsten target
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Calorimetry at SND@SHiP
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Calorimetry at SND@SHiP

• Require a massive neutrino target to maximise neutrino interaction rates

• Reconstruction of neutrino interaction vertex
• EM-showers (νe) to be reconstructed with modest energy resolution but good vertex/angular

resolution
• Muon identification and momentum measurement requires a magnetised absorber with tracking

capabilities (νµ)
• Hadronic energy measurement (νe, νµ, ντ )
• τ decay vertex reconstruction → need a vertex detector (similar to SND@LHC)

• Particle flow capabilities
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The power of particle flow (here in OPAL)

• Z0 → hadrons
• ∼ 33 particles
• ∼ 20 charged
• ∼ 10 X → γγ

• 3 n, K0
L

• Distributing the energy evenly in two jets
• Ejet = (60.6%track + (30.3%em + (9.1%had)Ejet
• Ejet = 10×2.76 GeVtrack +13.82 GeVem +4.15 GeVhad

• ∆Ejet
Ejet

= 0.005% ⊕ 0.8% ⊕ 2.2% = 2.4% using
particle flow

• ∆Ejet
Ejet

= 0.8% ⊕ 6.2% without
• 3.4% mass resolution with particle flow, 8.8%

without
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High Granularity layers at SND@SHiP

• Use the dismantled SoLiD experiment’s scintillator cubes and convert them into tiles and
integrate into the MTC as high granularity layers (HGLs)

• Tiles are traversed by WLS fibres and readout by SiPMs
• Allows the reconstruction of shower topology with good energy resolution

• Simulation and optimisation of the HGLs
• Determine and optimise sensitivity of the proposed design

• Build of a scalable HGL prototype in 2026
• Evaluate reconstruction and timing capabilities in test beams
• Implementation of particle flow algorithms
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High Granularity layers at SND@SHiP: readout electronics

• Require large dynamic range, good timing
resolution and operation in a triggerless
environment

• Preferred option: CALOROC1b ASIC
• CMS-HKROC-like backend
• 36 channels
• 10-bit 40 MHz ADC
• 25 ps TDC
• 4 gain levels
• Parallel channel readout
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ντ reconstruction using HGLs

• Main background to ντ reconstruction: νµ interactions
(CC for τ leptonic decays and NC for hadronic decays)

• Current ML algorithms uses
• Missing energy w.r.t. ντ direction of flight
• Muon momentum → use HGLs to complement SciFi
• Hadron energy → particle flow

• Require Signal
Background ∼ 10 → optimisation → better use of

HGLs on the model of CALICE AHCAL
• Enables LFU study in neutrino interactions

σstat⊕syst ∼ 3% in νe
νµ

, νe
ντ

and νµ
ντ

• Measurement of neutirno σDIS up to 100 GeV →
Eν < 10 GeV as an input to DUNE, higher energies to
cosmic neutrinos, σstat⊕syst5 % 18/30



HGL summary

• HGLs are necessary to improve the (hadronic) energy resolution of the SND
• Based around existing materials and technologies
• To be studied

• Particle identification capabilities in simulation
• Energy resolution optimisation using particle flow algorithms
• Prototype assembly using SoLiD cubes and WLS fibres
• Readout electronics and integration into the wider detector
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High precision calorimetry for FIP searches

• PID detector is composed of two calorimeter systems: ECAL (SplitCal) and HCAL
• Designed to discrminate e/µ/π in particular
• Needs to enable reconstruction of neutral final states (ALP→ γγ , heavy HNL decays, dark

photon decays...)
• For this ECAL requires excellent angular resolution
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SplitCal base design

• Mixed technology sandwich sampling
calorimeter

• Aims at shower and MIP reconstruction
• Plastic scintillator bars (EJ200) used for

energy reconstructing layers

• Uses 2-3 High Precision Layers (HPLs) to
reconstruct shower directionality

• 20 X0 depth for shower containement
• Weighs ∼ 30t
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SplitCal base design

• Detector is built in 6 hexants
• Each hexant has three main components:

• Absorber (Pb for ECAL, Fe for HCAL)
• Scintillator bars (some mixture of 1 × 200 × 6 cm3

and 1 × 200 × 1 cm3) readout by SiPMs
• High Precision Layers based on GEMs

• Segmentation → 18 modules in total
• Each module is built separately
• Readout philosophy: each module is readout

independently
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High-precision layers

• Triple GEMs are ideal as HPLs
• Good position resolution
• Fairly cheap per unit area
• Rather low rate: expected

∼ 50 kHz detector-wide

• 70-30% Ar-CO2

• Allows to reconstruct shower
directionality

• Complementarity with the
Spectrometer for hard muons

• Yields excellent invariant mass
and vertex resolution

60 cm

Overlap 
regions

2 m

2 m

GEM 0 GEM 4 GEM 8

GEM 1 GEM 5 GEM 9

GEM 2 GEM 6 GEM 10

GEM 3 GEM 7 GEM 11

72 cm
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Detector characteristics in model independent X → γγ decays

• Angular resolution is crucial in the reconstruction of neutral final states
• Essential to distinguish from π0 and η backgrounds
• Necessary to filter out EM debris background
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HPL optimisation in simulation

• Garfield evaluation of GEM performance for EM
showers (estimated up to ∼ 28 000 primary
electrons in a shower!)

• How many HPLs are needed?
• Optimal HPL positions within the detector
• Physics studies

• HNL decays with neutrals in final state
• Dark photon decays
• Improved ALP decay analysis
• Filtering of background

• Contribution to vertex resolution
• Needed for signal and background
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Calorimeter readout and electronics

• Readout is to be fully triggerless → requires little
dead-time

• Try to digitise analogue signals as close as possible
to the sensors

• Scintillator SiPMs readout by the CALOROC1b
• HPLs use SRS based on the 10bit VMM3a

• Apparently some issues with first 3 bits
• Do we need a large dynamic range?

• Rely on FPGA (Xilinx ZYNC or Versal) on
SPIDDDAQ boards (to be designed) to assign
timestamps

• Convert bitstreams to ethernet

• Slow and fast control architecture to be designed 26/30



Calorimeter prototyping

• On the scintillator side, significant prototyping has
been done already

• A prototype of hybrid GEM-scintillator calorimeter
should be devised and built in 2026

• SRS system to be used and integrated with
prototype scintillator redout electronics

• Test at SPS in 2026, at the same time as the HGL
optimised prototype

• Compare performance to simulation
• A second prototype to be built and tested using

optimised electronics and mechanical integration at
DESY in 2027/28
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SplitCal summary

• Significant simulation studies need to be conducted
to evaluate detector requirements and performance
w.r.t. signal and background

• Integration of HPLs into the detector to be done
• Readout electronics and DAQ scheme to be designed
• Would lead to building 2-3 prototypes
• Evaluation of HPL performance to be done in test

beams
• Work closely with the rest of the PID group on

these items
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Conclusion

• BDF/SHiP has a wide and unique physics program
as a beam dump experiment

• Calorimetry features prominantly in SHiP
• Magnetised tracking calorimeter → High Granularity

Layers
• PID detector → High Precision Layers

• Opens the way for unprecedented sensitivity at the
intensity frontier

• Wide simulation program on detector design and
physics performance to be done

• Developments on detector build, integration and
readout to be pursued

• 15 years of new physics searches! 29/30



All aboard!
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Backup: γγ separability

• Separation crucial for γγ → no separation, no signal!
• Needs to be verified

• Separability generally favoured by lower boost, higher mass and shorter lifetimes
• In the following Separation assumed possible if both showers separated by at least 2RM

(3.2 cm in lead). The decay taken at end of the decay vessel, with the ECAL 10 m
downstream. Consistent with NA62 separation selection.
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Backup: γγ separability
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Backup: Detector characteristics in model independent X → γγ decays
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→ angular resolution valuable in all circumstances, value degrades at low boost, energy
resolution becomes especially valuable for low B!
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Backup: SHiP PID Detector: scintillators

• Two scintillator bar types in proportions to
be determined (between 15 360 and 96
000 channels)

• Each bar type has a corresponding SiPM:
• (ECAL+HCAL) Wide bars: large

6 × 6 mm2
SiP Ms, many pixels, large

signals (up to O(100s)mV), large
capacitance (up to O(2 nF)). Baseline:
S14160-6050HS SiPM, Broadcom/FBK
SiPMs to be studied

• (ECAL) Thin bars: smaller
∼ 1.3 × 1.3 mm2 SiPMs, fewer pixels,
smaller signals (up to O(10s)mV),
smaller capacitance (up to O(10s)pF)).
Baseline: S13360-1325PE SiPM.

SiPM

WLS 
fibre

Scintillator

1cm

2m
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Backup: the problem of dead space and ease of access

• (Known) concerns were pointed out in our mechanical design

• One of the largest fixed target calorimeters ever
conceived

• Experiment will run for ∼ 15 years, there will be problems

• In the current (basic) configuration, three main issues

• Difficulty to cool (cooling needs are being
reassessed, still probably needed)

• Difficult channel access → cassette scheme?
Layer-wide of module wise?

• Dead regions → Need to be minimised absolutely
• All three points are related

• Thought of a few alleyways to try to resolve these issues

Module 4 Module 5

Module 2 Module 3

Module 0 Module 1

Difficult to 
access regions

2m

2m
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Backup: people at the moment

Role Person Comments
Project leader Walter Bonivento _

Integration/Installation Matei Climescu/Rainer Wanke Soon hopefully also Frank Steeg
Power/Control/Readout/Monitoring Matei Climescu _

Software Matei Climescu/Walter Bonivento _
Safety Matei Climescu _
CAD Matei Climescu Hopefully someone else soon (Fabian, Frank?)

GEMs/HPLs Matei Climescu/Kirill Skovpen Treated separately for now, will integrate
Test Beam Sebastian Ritter/Claudia Delogu/Matei Climescu _
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