The COHERENT Experiment: A Walk Down Neutrino Alley

Emma van Nieuwenhuizen Duke University Triangle Universities Nuclear Laboratory UGent Seminar May 13, 2025

What is CEvNS?

2

Coherent Elastic Neutrino-Nucleus Scattering

Predicted by Daniel Freedman in 1974, as a Standard-Model process.

Coherence condition met at neutrino energies of ≤ 50 MeV

Coherent Elastic Neutrino-Nucleus Scattering

The heavier the target nucleus, the higher the cross section

"Enhanced" cross section, increases $\propto N^2$!

Why Does CEvNS Matter?

CEvNS matters for: Supernovae

Neutrinos carry most of the energy from supernovae

Neutrino interactions (like at the Spallation Neutron Source) help us understand cross sections: neutrino energies at the SNS are supernova-esque!

CEvNS matters for: Neutron Skin Depth

6

Larger radius of neutrons give a neutron"skin" around nucleus

Neutron form factor contributes to decoherence in neutrino interactions - suppression of rate

Implications for neutron star structure and equation of state

-0

CEvNS matters for: Dark Matter

CEvNS is an irreducible background for weakly interacting massive particle (WIMP) dark matter searches: "neutrino fog"

WIMPs, if detected, have the same interaction signature as CEvNS

CEvNS matters for: "Extra" Z Bosons

CEvNS interacts with weak neutral current and is **flavor blind**

CEvNS is **well-predicted** by standard model, to the percent-level

If we see CEvNS rate changes, a new Z' mediator could be the culprit

An example CEvNS recoil energy spectrum on germanium, for a 30 MeV neutrino

CEvNS matters for: NSI's

Heavy mediators (like new Z' boson) cause full CEvNS rate change

Light mediators would causes a shape distortion in the energy spectrum

How can we search for non-standard interactions? Multiple targets, low thresholds, and great energy resolution!

CEvNS matters for: Sterile Neutrinos

Multiple short baselines at the SNS!

CEvNS is flavor-blind, so we don't care to disambiguate: a loss in rate of any flavor to a sterile would be interesting!

Need many baselines, lots of detectors, and different XC's, both CEvNS and CC

Future facility upgrade will give two "deuling" neutrino sources

A Vibrant New Field

The COHERENT Collaboration

한국연구재단

What is the SNS?

SNS Neutrinos: πDAR

SNS Neutrinos: πDAR

SNS is a PULSED source ---> ~10⁴ - scale reduction in backgrounds

Neutrino Alley

SNS Backgrounds

Neutrons:

- Beam-related neutrons
- Neutrino-induced neutrons
- Muon-induced neutrons

Gammas:

- 511 keV from e⁺ e⁻ annihilation in Hot Off-Gas pipe
- Radioactive decay of Uranium and Thorium (concrete)
- Betas from Pb-210,
 bremsstrahlung off shielding

Cosmics:

- Muons
- Particle showers due to muon interaction in shielding

2017: CEvNS no longer eludes us!

COHERENT, PRL 126 012002 (2021)

First detection of CEvNS on CsI at 6.7 σ confidence (11.6 σ after combined dataset)

2021: Just to be sure...

> 3σ detection of CEvNS on argon

24 kg of single phase liquid argon Data collected from July 2017 -September 2018

Ge-mini

18 kg of high purity germanium semiconductor detectors

Ge-mini

Commissioning start: Spring 2022

Excellent energy resolution: FWHM pulser peak ~135 eV

Low thresholds: unoptimized 1.5 keV, can go lower

Low intrinsic backgrounds

Cooled to 77 K in LN₂

Ge-mini

Commissioning start: Spring 2022

Excellent energy resolution: FWHM pulser peak ~135 eV

Low thresholds: unoptimized 1.5 keV, can go lower

Low intrinsic backgrounds

Cooled to 77 K in LN₂

T. Comellato, M. Agostini, S. Schonert, Eur.Phys.J.C 81 (2021) 1, 76

Ge-mini: Commissioning

How does Ge-mini collect data?

~100µs baseline, externally triggered by SNS beam

 \leftarrow 120Hz trigger for signal & background windows

 \rightarrow

2024: First-Light CEvNS Measurement on Ge

3.9 σ significance measurement of CEvNS on germanium A counting analysis: 21.0 ± 7.8 CEvNS events in region [1.5, 8.5] keV and [0,8] µs 1.9 σ from Standard-Model Prediction

More left to do for germanium...

Many CEvNS Results: what's next?

Entering a period of **"precision CEvNS"** measurements

For NSI's, constraints on weak mixing angle, neutrino magnetic moment, steriles, neutron form factor....

We need incredibly low systematic and statistical uncertainties, in the percent level!

Solution: scale up in mass, increase exposure, and reduce uncertainties

Going bigger: COH-Ar-750

Going bigger: COH-Ar-750

Bigger, and more targets

CEvNS measurements on CsI, Ar, and Ge, but what about lower neutron number?

Na a great candidate, and luckily, we have a ton... 2.4 tonnes!

NalvETe

"Sodium-Iodide Neutrino Experiment at the TonnE scale"

2.4 kg of NaI, 315 crystals, 3/5 modules currently deployed

Can measure:

- $\circ \quad \text{CEvNS on Na}$
- Charge Current on Iodine

Dual-gain bases can do keV and MeV scale light detection

Neutrino flux uncertainty

Neutrino flux determined from simulations, but still a 10% systematic uncertainty

Impacts all experiments in Neutrino Alley

Flux uncertainty needs to decrease as we drop in statistical uncertainty

Experimental Uncertanties

Solution: (A lot of) D2O

Well-understood reaction:

 $\nu_{e} + d \rightarrow p + p + e^{-}$

Will reduce flux uncertainty down from $10\% \rightarrow 3\%$

Modularity: one identical module with H₂O will allow subtraction of the CC interaction on ¹⁶O

inCOHERENT at COHERENT: Pb NINs

A background for COHERENT: Neutrino-Induced Neutrons

Charge current neutrino interaction on lead shielding yields beam-correlated backgrounds

Nubes (pictured) yielded CC xsec result 0.29 times expected \rightarrow suspiciously low

NalvE-185

Deployment of a tonne-scale NaI experiment is a lot, start with prototype

185 kg of NaI, with a measured charged current result of 5.8σ , but 40% of the theorized value

Solution: bigger, and more experiments to investigate CC low cross sections!

Phys. Rev. Lett. 131, 221801 (2023)

Neutrino-Induced Fission: NuThor

Neutrino-induced fission first theorized in 1971

52kg of Thorium, surrounded by NaI scintillator, Gd-water, lead, borated polyethylene

First detection of *v*-fission at 2.4σ significance

Coming up soon: Pb Glass

COHERENT reuses & recycles:

Decommissioned Pb glass usable for a large-scale Pb charged-current study

More mass to help solve mystery of low CC results

Coming up soon: Metal Sandwich

Physicists love modularity: alternating scintillator and swappable metal sheet (target)

More inelastic charged-current, with potential for directionality

Scintillator prototype with λ -shifting fibers

Coming up soon: LAr TPC

More incoherent: a liquid argon time-projection chamber

Allows for a full 3D reconstruction of neutrino interactions

Additional benefit: small-scale prototype of DUNE near detector

Prototype at SLAC. Courtesy of Yun-Tse Tsai

SNS Upgrades

SNS is growing:

Power increase to 2 MW for First Target Station by 2026

Construction of Second Target Station to follow

Potentially space for more multi-ton neutrino experiments!

Other notable COHERENT Efforts:

Detector Calibration facility (Tandem van de Graaff @ TUNL)

Cryogenic CsI

Liquid Neon in CENNS-10

And many, many more...

The full lifecycle of an experiment:

In numbers, COHERENT has: Theses: **17** Thesis prizes: **5** Publications: **15**

COHERENT is an excellent training grounds for students!

Thank you! Questions?

Backup slides

CEvNS Ge result: energy and time

Ge-mini Experimental Reach: Non-Standard Interactions

Ge-mini Experimental Reach: Weak Mixing Angle

Weak mixing angle, assuming 5% uncertainty on CEvNS rate

[2] M. Cadeddu, Magnificent CEvNS 2023, Munich

COHERENT Physics Goals

Table 1 COHERENT physics topics and corresponding experimental requirements

Topic	Experimental signature	Detector requirements
Nonstandard neutrino interactions, new mediators	Deviation from N^2 , deviation from SM recoil shape, event rate scaling	Multiple targets, energy resolution, quenching factor
Weak mixing angle	Event rate scaling	Multiple targets, quenching factor
Neutrino magnetic moment	Low-recoil-energy excess	Low-energy threshold, energy resolution, quenching factor
Inelastic CC/NC cross section for supernova	High-energy (MeV) electrons, gammas	Large mass, dynamic range
Inelastic CC/NC cross section for weak coupling parameters	High-energy (MeV) electrons, gammas	Large mass, dynamic range
Nuclear form factors	Recoil spectrum shape	Energy resolution, multiple targets, quenching factor
Accelerator-produced dark matter	Event rate scaling, recoil spectrum shape, timing, direction with respect to source	Energy resolution, quenching factor
Sterile oscillations	Event rate and spectrum at multiple baselines	Similar or movable detectors at different baselines

COHERENT at the Spallation Neutron Source P.S. Barbeau, Yu. Efremenko, K. Scholberg Annual Review of Nuclear and Particle Science 2023 73:1, 41-68 https://doi.org/10.1146/annurev-nucl-101918-023518

Why Measure CEvNS?

Non-Standard Interactions (NSIs)

Beyond-Standard Model test: probe for heavy mediator **vector couplings** between neutrino and quarks

Vector couplings may **increase** or **decrease** CEvNS cross section: measurements on many Z/N targets can **break degeneracies**

BSM test: light mediators (Z') may distort CEvNS recoil energy spectrum, detectors with great energy resolution may be sensitive to distortions

Neutrino Magnetic Moment

SM states small μ_v , contributes towards **uptick** of CEvNS events at low recoil energy T

Larger than expected μ_{v} may indicate BSM physics

How can we measure CEvNS?

Core-collapse supernovae:

- $\sim 10^{12} \, v$'s cm⁻² s⁻¹
- MeV 10's of MeV

• Rare

Nuclear reactors:

- ~ 10^{12} v's cm⁻² s⁻¹ flux
- ~ 1000's of keV (low recoil E)
- Background rejection challenges

Stopped-pion Sources:

- $10^7 v$'s cm⁻² s⁻¹ flux
- 1-50 MeV
- Pulsed neutrino source

Ge-mini Muon Veto

Top scintillator panel

CEvNS Cross Section with Vector and Axial-Vector Contributions

$$\frac{d\sigma}{dT}(T,E_{\nu}) = \frac{G_F^2 M}{2\pi} \left[(G_V + G_A)^2 + (G_V - G_A)^2 \left(1 - \frac{T}{E_{\nu}}\right)^2 - (G_V^2 - G_A^2) \frac{MT}{E_{\nu}^2} \right]$$

$$G_V = (g_V^p Z + g_V^n N) F_{nucl}^V(Q^2)$$

$$G_A = (g_A^p(Z_+ - Z_-) + g_A^n(N_+ - N_-))F_{nucl}^A(Q^2)$$

D. Akimov et al. (COHERENT Collaboration), The COHERENT experimental program (2022), arXiv:2204.04575v1 [hep-ex].

CEvNS Cross Section - Weak Mixing Angle

CEvNS cross section:

$$\frac{d\sigma}{d\cos(\theta)} = \frac{G^2}{8\pi} [Z(4\sin^2\theta_W - 1) + N]^2 E^2(1 + \cos\theta)$$

$$=\frac{G^2}{8\pi}\frac{N^2}{E^2}(1+\cos\theta)$$

"Enhanced" cross section, increases $\propto N^2$!

P. S. Barbeau, Y. Efremenko, and K. Scholberg, COHERENT at the Spallation Neutron Source (2021), arXiv:2111.07033v1 [hep-ex].

CEvNS Cross Section - Momentum Transfer and Recoil Energy

CEvNS cross section in terms of:

Momentum transfer to the target nucleus:

$$\frac{d\sigma}{d\Delta^2} = \frac{G^2}{8\pi} N^2 \left(1 - \frac{\Delta^2}{\Delta_{\max}^2} \right)$$
$$\Delta^2 = 2E^2 (1 - \cos\theta)$$

Recoil energy of target nucleus:

$$\frac{d\sigma}{dT} = \frac{G^2}{4\pi} N^2 M \left(1 - \frac{MT}{2E^2} \right)$$

Coherence condition met at neutrino energies of $\lesssim 50 \text{ MeV}$ where $Q^*R \lesssim 1$

NSI Heavy Mediator Vector Coupling Cross Section

$$\begin{pmatrix} \frac{d\sigma}{dT} \end{pmatrix}_{\nu_{\alpha}A} = \frac{G_F^2 M}{\pi} F^2 (2MT) \left[1 - \frac{MT}{2E_{\nu}^2} \right] \times \\ \{ [Z(g_V^p + 2\varepsilon_{\alpha\alpha}^{uV} + \varepsilon_{\alpha\alpha}^{dV}) + N(g_V^n + \varepsilon_{\alpha\alpha}^{uV} + 2\varepsilon_{\alpha\alpha}^{dV})]^2 \\ + \sum_{\alpha \neq \beta} [Z(2\varepsilon_{\alpha\beta}^{uV} + \varepsilon_{\alpha\beta}^{dV}) + N(\varepsilon_{\alpha\beta}^{uV} + 2\varepsilon_{\alpha\beta}^{dV})]^2 \}.$$

Linear Contribution of Nuclear Form Factor

Measuring Form Factors

$$\frac{d\sigma}{dT} = \frac{G^2}{4\pi} N^2 M \mathbf{F}^2(\mathbf{\Delta}) \left(1 - \frac{MT}{2E^2}\right)$$

Form factor suppresses the cross section, but $F^2(\Delta) \approx 1$ at low momentum transfer

Higher momentum transfer = decreased CEvNS rate (xsec suppression ~ < 5%)

With superior energy resolution, Germanium detectors may see reduced counts at higher T

Can measure form factor contribution to CEvNS rate, important for neutron radius and neutron skin depth.

CEvNS Recoil Spectra on Different Nuclei

D. Akimov et al. (COHERENT Collaboration), Observation of coherent elastic neutrino-nucleus scattering, Science **357**, 1123 (2017).

P. S. Barbeau, Y. Efremenko, and K. Scholberg, COHERENT at the Spallation Neutron Source (2021), arXiv:2111.07033v1 [hep-ex].

Plot of CEvNS, CC, and NINs Cross Sections

P. S. Barbeau, Y. Efremenko, and K. Scholberg, COHERENT at the Spall Neutron Source (2021), arXiv:2111.07033v1 [hep-ex].

How does a PMT work?

