

GHENT UNIVERSITY

27TH OF JANUARY 2023

EVIDENCE FOR INTRINSIC CHARM QUARKS IN THE PROTON

ABSTRACT

[...] The proton is a state of **two up quarks and one down quark bound by gluons**, but quantum theory predicts that in addition there is an **infinite number of quark–antiquark pairs**. Both **light and heavy quarks**, [...], are revealed inside the proton in high-energy collisions. However, **it is unclear whether heavy quarks also exist as a part of the proton wavefunction**, which is determined by **non-perturbative dynamics** and accordingly unknown: so-called **intrinsic heavy quarks**.

THE PROTON WAVEFUNCTION

simple picture: proton = $|uud\rangle$

THE PROTON WAVEFUNCTION

valence vs sea partons

THE PROTON WAVEFUNCTION

Q^2 dependence (momentum transfer)

PDF EVOLUTION

DGLAP equations
$$Q^2 \frac{d}{dQ^2} f_i(x, Q^2) = \sum_j \int_x^1 \frac{dy}{y} P_{ij}(x/y, a_s(Q^2)) \cdot f_j(y, Q^2)$$

Higher Q^2 = see more emissions from partons at higher momenta!

HEAVY QUARKS

DGLAP equations apply to massless quarks. What about massive quarks?

bottom

HEAVY QUARKS

Via matrix element calculation (fixed order)

- assume zero pdf
- convergence issues at high Q^2

Include in PDFs (infinite order)

neglect mass

Require continuity in physical observables!

INTRINSIC OR EXTRINSIC?

Via matrix element calculation (fixed order)

- assume zero pdf or not? (non-perturbative)
- convergence issues at high Q²

Include in PDFs (infinite order)

neglect mass

Require continuity in physical observables!

VALENCE VS INTRINSIC

Valence = net excess quarks vs antiquarks

- $\int_0^1 (q(x) \overline{q}(x)) dx \neq 0$
- is also intrinsic

Intrinsic = non-perturbative pdf

- not necessarily valence
- but possibly $q(x) \neq \overline{q}(x)$


```
CHARM: INTRINSIC OR NOT?
```


MEASURING THE 4FS PDFS

- parametrize at Q₀ using neural networks
- pick measurement at scale Q
- evolve PDFs
- constrain

NNPDF4.0

•
$$xf(x, Q_0) = \underbrace{A_k x^{1-a_k} (1-x)^{\beta_k}}_{\text{preprocessing}} \underbrace{NN_k \left(x, Q_0 \mid \vec{\theta}\right)}_{\text{neural net}}$$

apply theoretical constraints

• total momentum fraction: $\sum_k \int_0^1 x f_k(x, Q) dx = 1$

• valence vs sea:
$$\int_0^1 [u(x, Q) - \overline{u}(x, Q)] dx = 2$$

positive g, u, d, and s PDFs

• ...

which pdf basis?

- flavour: g, u, d, s, c + anti
- evolution: linear combination
- charm: $c^+ = c + \overline{c}$

- neural net (unbiased)
- automatic optimization hyperparameters
 - depth and extent of network
 - choice of minimizer
 - learning rate
 - activation function
 - **...**
 - ightarrow 1500 configurations scanned!

CHARM: INTRINSIC OR NOT?

 $_{\uparrow} Q^2 \, [\text{GeV}^2]$

Step 1: DETERMINE $n_F = 4$ PDF FROM DATA (at 1.65 GeV)

- (1.27 GeV)² Step 2: EVOLVE TO m_c

Step 3: TRANSFORM TO $n_F = 3$ using

$$c^+ = c + \overline{c}$$

CHARM: INTRINSIC OR NOT?

 $A Q^2$ [GeV²] Step 1: DETERMINE $n_F = 4$ PDF FROM DATA (at 1.65 GeV) 0.05 0.04 $(1.51 \text{ GeV})^2$ Step 2: EVOLVE TO m_c AT POLE MASS 0.03 $xc^+(x,Q)$ 0.02 0.01 Step 3: TRANSFORM TO $n_F = 3$ using 0.00 -0.014FNS -0.02-0.03

 $c^+ = c + \overline{c}$

+ purely perturbative charm at $N^{2,3}LO$

EVIDENCE FOR INTRINSIC CHARM!

- **3** σ deviation from zero (full data set)
 - **2.5** σ excluding validation data
- uncertainties
 - right: statistical
 - missing higher-order uncertainties [MHOU]
 - **NNLO** (blue) vs $N^3 LO$ (green)
- stable results w.r.t.
 - SM parameters (*m_c*)
 - methodology 4FS fit
 - dataset variations

THEORY PREDICTIONS FOR INTRINSIC CHARM

- predict shape, not normalization
- BHPS: analytic calculation of c(x) in $|uudc\overline{c}\rangle$ assuming $m_c \gg$ other p_T , m
- non-perturbative meson baryon fluctuations like

$$ho
ightarrow \Lambda_c^+ + \overline{D}^0$$

LHCB VALIDATION

- Machine learning to fit PDFs
- dataset from LHC and HERA (DIS)
- disentangle intrinsic from radiative charm (3σ evidence)
- agreement with modelling
- confirmed with LHCb

