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Bayesian Neural Networks



Reminder — Likelihood-Loss 0

Training should optimize probability that network parameters @ describe the data x

|

Bayes’ Theorem Likelihood —» Known from simulation ©

p(x|w) p(w) Prior
p(x) Normalization

plw|x) =

Posterior



Reminder — Likelihood-Loss 0)

Bayes’ Theorem Likelihood-loss Weight regularization

Z = —logp(w|x)

= — log p(x| w) — log p(w) + const

Normalization term

Heteroscedastic loss
Regression with

, : :
| F(x) = £, (x) | Gaussian assumption

g heteroscedastic — 2 ,

i 20(x;)? o with point-wise

uncertainty

Homoscedastic loss = MSE

Same uncertainty

1
ZMSE = E Z FEARNACATRE

o(x) — o = const




Is there more we can do?



Yes!
Bayesian Neural Networks

— There Is nothing really Bayesian about them!




What we have vs what we want _0)

So far: NNs are deterministic — fixed input x — fixed output y

However, In particle physics:

— we are not only interested in results, but also in errorbars

We need: fixed input x ——— probabilistic output (y) & 0, ———>

How do we achieve this?



Bayesian neural networks

Neural network

Wy

Network weights are
deterministic

a):a)()

Bayesian Neural network

Network weights are
drawn from distribution

w ~ p(w)




Basics of BNNs

Predictive distribution in Classification Prediction in Regression

piy|x) = Jda)p(y | w, x) p(w | x)

y(x) = (y) = dep(y | x)y

= dep(w \X)dep(y | X, @)y

Classifier output

— average over | p(@w|x) | — Intractable ® = del?(a) | x) y(x, w)
Bayes' :
theorem Regression output

(@] 1) p(x|w) p(w) Need to Calculate (x)
— - —
P p(x) normalization P

dep(x |w) p(w) | =—» Also Intractable ®

So what do we do instead?



Variational approximation

Approximate posterior
p(w|x) ~ g (@|x) = q,(w)
Simplify (see later)
Parameters o to adjust

Kullback Leibler Divergence

q,(X)
KL(g,(x), p(x)) = de q,(x) log ( )
p(x)

- Measures information overlap

- Always positive = zero iff p(x) = g,(x)
- Non symmetric



BNN Loss function

Kullback Leibler Divergence

q.,(®)
KL(g (@), p(®w|x)) = de q.,(®) log ( )
p(w | x)

g, (@) p(x) ) Intractable norm
p(@) p(x | w)

= de g, (@) log (
= KL(g (), p(w)) — de g, (@) log p(x | w) + log p(x) de q, (@)

| Problem specific =1
BNN loss function

@ Neg log-likelihood averaged over g,

Zgnn = KL(g (@), p(@)) — Jdm g, (@) log p(x| w)
2 ] @ q, shoud not deviate too much from prior!




How to choose ¢, and the prior?



Standard choice

In practice: p,q, are chosen to be Gaussian

p(w)

KL(g(®), p(®)) =




Deterministic limit

Gaussian probability

Delta distribution = fixed weight

g, (@) = o(w — W)

L2 norm: /Ia)g

Loss function

— Usually 4 is a

2
Q)
ZLenn = Ly = — log p(x | wy) + O 4 const free parameter

20p




Mean-field approximation

For K network parameters
we do factorization ansatz:

— BNN has 2K parameters — Mean-field approximation [1505.05424, 1601.00670]

If correlated Gaussians — BNN ~ K” parameters — bad scaling ®

Deepness of NN compensates approximation?

— Open question in ML community!



Questions?



Precision Generation

[2110.13632] MEM
[2210.00019] Point Clouds
OTUS MADNIS [2102.05073] PELICAN
2101.08944] [2212.06172,. ] CaloFlow |-IV [2211.00454]
[2106.05285,...]
ELSA Energy Flow Networks Landscape of
Jet Simulation 530507696 [1810.05165] Top tagger
[2203.00520] ! ' ] [1902.09914]
PC-JeDi Bayesian Tagger
[2303.05376] FPCD [1904.10004]
G " [2304.01266]
enerative
EPIC-GAN Models Supervised MadMiner
[2301.08128] Learning [1907.10621,...]
How to GAN DDPM & CFM NNPDF
[1907.03764] [2305.10475] [2109.02653]

Matrix Elements

[2206.14831] Symbolic regression

[2109.10414]

CaloGAN
[1712.10321]

JetGPT

[2305.10475] Flavor structure

[2304.14176]

Jet Clustering
[2008.06064]

Simplifying Polylogs
[2206.04115]

String vacua & landscape

[1903.11616, 2111.11466]
3D Pixel Clustering

[2007.03083] CATHODE

[2109.00546]

Model Building
[2103.04759]

Normalized AE
[2206.14225]

Analytic continuation
[2112.13011]

CWoLA Hunting
[1902.02634]

(R-)ANODE
[2001.04990,...]



Bayesian Tagger
[1904.10004]

Supervised
Learning

Matrix Elements
[2206.14831]




Example |
Bayesian Amplitude Regression

Badger, Butter, Luchmann, Pitz, Plehn [2206.14831]



LHC analysis + ML
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Bayesian Regression

We want to fit a set of amplitudes A(x)

Training data: |{x,A(x)}

We can define: | p(A | x) ~ prob of A @ position x | (— p(y|x) before)

Prediction in regression

Ax) =(A) = JdA Ap(A|x) with | P(A[x) = dep(A | @, x) p(@ | x)

Variational approximation

BNN
p(@|x) = q,(@)



We want to describe mean and
stddev of prediction



BNN mean prediction

Mean prediction

Alx) = ()
(x) =(A) = |dAAp(A|x)

dA [dep(A |w, x) p(w | x)
Variational
approximation

dA [de pPA|lw,x)q, (o)

dw q () JdA ApA|lw,x)

do g,(w) A(x, ) network output




What about the uncertainty?



BNN variance of prediction

Variance of prediction

62,() = (A — (AN?) = |dA (A= (A))" p(A|x)

aA J — () pAlw,x) g ()

de qa(a))“dAAzp(A\a) X) — 2(A)JdAAp(A\m x) + (A)z[dAp(A\a) x)]

dw qa(a)) Z(x ) — A(x, a))2> de q,(®) (K(x, @) — (A))2
_V—J -—

2
G O-m de l(x) e = Gpred(x )



Types of uncertainties

ﬂ Predictive uncertainty

agred(x) — de g, (w) (K(x, ®) — (A))2

— following (%) this vanishes for g(w) — o(w — w)

— with precise training data
— requires more and better training — decreases with more training data

— represents statistical uncertainty (epistemic uncertainty) for physicists

d — Ogtat

Gpre




Types of uncertainties

Q Likelihood related uncertainty

al%ke(x) = de q,(®) (P(x, w) — A(x, a))2> = de q,(®) al%ke(a), X) = (al%ke(a))) network constructs

uncertainty

— already occurs without sampling — does not vanish for g(w) — o(w — W)

— However, vanishes if amplitude is perfectly known = p(A | w, x) = 6(A — Ap)

Alx, w) = JdA Ap(A|lw,x) = A, A2(x, w) = JdA A2p(A|w,x) » A2 Als.o.works if
training data

: L _ has no uncertainty
— Corresponds to the Gaussian uncertainty in the heteroscedastic loss

— reaches constant for perfect training
— reflects stochastic training data, bad hyperparameters, model expressivity,..

— represents systematic uncertainty (aleatoric uncertainty) for physicists

Olike = Gsyst




Bayesian Regression

Ensemble of networks

-0.1
0.2/1 0.8
x |—» —>< A(wy) )

BNN & Omodel(¥1) Output

SN\ S 0.3 1
N N\ @ 0.5/, 0.7 <A>=N2A(a))

—> outpUl| ——9p | ¥ | K(a)z) 2 1 lN 2

A P Ormodel(@2) Omodel ™ N 2 Gmodel(a)i)

1 & _
-0.2 2 = — A) — A(w))?
N A(wy)
O-model(a)S)

[(K(XJ, 60) - A]j[ruth)Z

ZGSyst(X], 60)

log oy (X, @)

SfBNN — KL(Qa(a))a p(a))) + J'da) Qa(a)) Z

J

[2206.14831]



Example i
Bayesian Tagger

Bollweg, Haussmann, Kasieczka, Luchmann, Plehn, Thompson [1904.10004]



A

Quantum
Theory

Scattering
Amplitudes

LHC analysis + ML

MC

sampler

Shower +
hadron.
simulattion

W)

Detector

Detector
simulation

Recon-
struction

Recon-
struction

Event
selection

2.2 Bayesian :

Tagging

Event
selection

Pattern
recognition




Bayesian Jet Tagger

Prediction of Bayesian classifier

Horeq = P(C|X) = de q,(®) p(c|w, x) BNN classifier output
Class prediction
o , only statistic is only output
Statistical uncertainty uncertainty

— @

2 2

no additional
parameter for
syst. uncertainty

Opred = Ostat = J'da) G @) (p(c|x, ) — "’tpl‘ed)2

BCE loss

2N = KL(g, (@), p(w)) + de (@) 2 yjtmth log p(c|xj, w) + (1 — yjtmth) log(1 — p(c|x;
J




We have to be careful though...



Bayesian Jet Tagger

Classifiers have a non-linearity (sigmoid) in last layer to get p(c|x) € [0,1]

— Leads to distortion of Gaussian shapes in general /!

=0 = 2
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Have to check if still Gaussian after sigmoid!!
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Bayesian Jet Tagger
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