# Machine Learning for HEP

Lecture II — Bayesian Neural Networks





BND Graduate School — Blankenberge 2024

Ramon Winterhalder

### Lecture II

### Bayesian Neural Networks

#### Reminder — Likelihood-Loss



Training should optimize probability that network parameters  $\omega$  describe the data x



#### Reminder — Likelihood-Loss



#### Bayes' Theorem

$$p(\omega \mid x) = \frac{p(x \mid \omega) p(\omega)}{p(x)}$$



Weight regularization

$$\mathcal{L} = -\log p(\omega \mid x)$$

$$= -\log p(x \mid \omega) - \log p(\omega) + \text{const}$$

#### Normalization term

#### Heteroscedastic loss

$$\mathcal{L}_{\text{heteroscedastic}} = \sum_{i} \frac{|f(x_i) - f_{\omega}(x_i)|^2}{2\sigma(x_i)^2} + \log \sigma(x_i) + \dots$$

Regression with Gaussian assumption

with point-wise uncertainty

Homoscedastic loss = MSE

$$\sigma(x) \to \sigma = \text{const}$$

$$\mathcal{L}_{\text{MSE}} = \frac{1}{2\sigma} \sum_{i} |f(x_i) - f_{\omega}(x_i)|^2 + \dots$$

### Is there more we can do?

# Yes! Bayesian Neural Networks

→ There is nothing really Bayesian about them!

#### What we have vs what we want



So far: NNs are deterministic  $\longrightarrow$  fixed input x  $\longrightarrow$  fixed output y

However, in particle physics:

→ we are not only interested in results, but also in errorbars

How do we achieve this?

### Bayesian neural networks









#### Basics of BNNs



#### Predictive distribution in Classification



$$p(\omega \mid x) = \frac{p(x \mid \omega) p(\omega)}{p(x)}$$

#### Prediction in Regression

$$y(x) \equiv \langle y \rangle = \int dy \, p(y | x) \, y$$

$$= \int d\omega \, p(\omega | x) \int dy \, p(y | x, \omega) \, y$$

$$= \int d\omega \, p(\omega | x) \, \bar{y}(x, \omega)$$
Regression output

$$p(x) = \int d\omega \, p(x \, | \, \omega) \, p(\omega) \qquad \longrightarrow \text{Also Intractable } \mathfrak{S}$$

So what do we do instead?

### Variational approximation



#### Approximate posterior



#### Kullback Leibler Divergence

$$KL(q_{\alpha}(x), p(x)) = \int dx \, q_{\alpha}(x) \, \log\left(\frac{q_{\alpha}(x)}{p(x)}\right)$$

- Measures information overlap
- Always positive  $\rightarrow$  zero iff  $p(x) = q_{\alpha}(x)$
- Non symmetric



#### **BNN Loss function**



#### Kullback Leibler Divergence

$$\begin{aligned} \operatorname{KL}(q_{\alpha}(\omega), p(\omega \,|\, x)) &= \int \mathrm{d}x \, q_{\alpha}(\omega) \, \log \left( \frac{q_{\alpha}(\omega)}{p(\omega \,|\, x)} \right) \\ &= \int \mathrm{d}x \, q_{\alpha}(\omega) \, \log \left( \frac{q_{\alpha}(\omega) \, p(x)}{p(\omega) \, p(x \,|\, \omega)} \right) \\ &= \operatorname{KL}(q_{\alpha}(\omega), p(\omega)) - \int \mathrm{d}\omega \, q_{\alpha}(\omega) \, \log p(x \,|\, \omega) + \log p(x) \int \mathrm{d}\omega \, q_{\alpha}(\omega) \end{aligned} \quad \text{Intractable norm}$$

$$= \operatorname{Problem specific}$$

#### **BNN** loss function

$$\mathcal{L}_{\text{BNN}} = \text{KL}(q_{\alpha}(\omega), p(\omega)) - \int d\omega \, q_{\alpha}(\omega) \, \log p(x \mid \omega)$$

- (1) Neg log-likelihood averaged over  $q_{\alpha}$
- 2)  $q_{\alpha}$  shoud not deviate too much from prior!

# How to choose $q_{\alpha}$ and the prior?

#### Standard choice



In practice:  $p, q_{\alpha}$  are chosen to be Gaussian

$$q_{\alpha}(\omega) \equiv q_{\mu,\sigma}(\omega) = \frac{1}{\sqrt{2\pi\sigma_q^2}} \exp\left[-\frac{(\omega - \mu_q)^2}{2\sigma_q^2}\right]$$

$$p(\omega) = \frac{1}{\sqrt{2\pi\sigma_p^2}} \exp\left[-\frac{(\omega - \mu_p)^2}{2\sigma_p^2}\right]$$

• Usually  $\mu_p=0$ 



KL divergence

$$\mathrm{KL}(q_{\alpha}(\omega), p(\omega)) = \frac{\sigma_q^2 - \sigma_p^2}{2\sigma_p^2} + \frac{\mu_q^2}{2\sigma_p^2} + \log \frac{\sigma_p}{\sigma_q}$$

2 serves as regularization!

#### Deterministic limit



#### Gaussian probability



### Mean-field approximation



For K network parameters we do factorization ansatz:

$$q_{\alpha}(\omega) = \prod_{i=1}^{K} \mathcal{N}(\omega_i | \mu_i, \sigma_i)$$

 $\rightarrow$  BNN has 2K parameters  $\longrightarrow$  Mean-field approximation [1505.05424, 1601.00670]

If correlated Gaussians  $\longrightarrow$  BNN  $\sim K^2$  parameters  $\longrightarrow$  bad scaling  $\stackrel{\textstyle \triangleright}{\otimes}$  Deepness of NN compensates approximation?

→ Open question in ML community!







# Example I

### Bayesian Amplitude Regression

### LHC analysis + ML





### Bayesian Regression



We want to fit a set of amplitudes A(x)

Training data:  $\{x, A(x)\}$ 

$$\{x, A(x)\}$$

We can define: 
$$p(A \mid x) \sim \text{prob of } A @ \text{position } x \quad (\rightarrow p(y \mid x) \text{ before})$$

$$(\rightarrow p(y | x) \text{ before})$$

Prediction in regression

$$A(x) \equiv \langle A \rangle = \int dA \, A \, p(A \mid x)$$

with 
$$p(A \mid x) = \int d\omega p(A \mid \omega, x) p(\omega \mid x)$$

Variational approximation

$$p(\omega \mid x) \simeq q_{\alpha}(\omega)$$

BNN

# We want to describe mean and stddev of prediction

### BNN mean prediction



#### Mean prediction

$$A(x) \equiv \langle A \rangle = \int \mathrm{d}A \, A \, p(A \mid x)$$

$$= \int \mathrm{d}A \int \mathrm{d}\omega \, A \, p(A \mid \omega, x) \, p(\omega \mid x)$$

$$= \int \mathrm{d}A \int \mathrm{d}\omega \, A \, p(A \mid \omega, x) \, q_{\alpha}(\omega)$$

$$= \int \mathrm{d}\omega \, q_{\alpha}(\omega) \int \mathrm{d}A \, A \, p(A \mid \omega, x)$$

$$= \int \mathrm{d}\omega \, q_{\alpha}(\omega) \, \overline{A}(x, \omega)$$
network output

# What about the uncertainty?

### BNN variance of prediction



#### Variance of prediction

$$\sigma_{\text{tot}}^{2}(x) \equiv \langle (A - \langle A \rangle)^{2} \rangle = \int dA \left( A - \langle A \rangle \right)^{2} p(A \mid x)$$

$$= \int dA \int d\omega \left( A - \langle A \rangle \right)^{2} p(A \mid \omega, x) q_{\alpha}(\omega)$$

$$= \int d\omega q_{\alpha}(\omega) \left[ \int dA A^{2} p(A \mid \omega, x) - 2\langle A \rangle \int dA A p(A \mid \omega, x) + \langle A \rangle^{2} \int dA p(A \mid \omega, x) \right]$$

$$= \int d\omega q_{\alpha}(\omega) \left( \overline{A^{2}}(x, \omega) - \overline{A}(x, \omega)^{2} \right) + \int d\omega q_{\alpha}(\omega) \left( \overline{A}(x, \omega) - \langle A \rangle \right)^{2}$$

$$\mathbf{1} = \sigma_{\text{model}}^{2}(x)$$

$$\mathbf{2} = \sigma_{\text{pred}}^{2}(x)$$

### Types of uncertainties



#### **Predictive uncertainty**

$$\sigma_{\text{pred}}^2(x) = \int d\omega \, q_{\alpha}(\omega) \left( \overline{A}(x, \omega) - \langle A \rangle \right)^2$$

- $\rightarrow$  following (\*) this vanishes for  $q(\omega) \rightarrow \delta(\omega \omega_0)$
- → with **precise** training data
  - → requires more and better training → decreases with more training data
- → represents statistical uncertainty (epistemic uncertainty)

for physicists  $\sigma_{\mathrm{pred}} o \sigma_{\mathrm{stat}}$ 

$$\sigma_{\rm pred} \rightarrow \sigma_{\rm stat}$$

### Types of uncertainties



2 Likelihood related uncertainty

$$\sigma_{\text{like}}^{2}(x) = \int d\omega \, q_{\alpha}(\omega) \left( \overline{A^{2}}(x, \omega) - \overline{A}(x, \omega)^{2} \right) = \int d\omega \, q_{\alpha}(\omega) \, \sigma_{\text{like}}^{2}(\omega, x) \equiv \langle \sigma_{\text{like}}^{2}(\omega) \rangle$$

- ightharpoonup already occurs without sampling ightharpoonup does not vanish for  $q(\omega) 
  ightharpoonup \delta(\omega-\omega_0)$
- $\rightarrow$  However, vanishes if amplitude is perfectly known  $\rightarrow p(A \mid \omega, x) \rightarrow \delta(A A_0)$

$$\overline{A}(x,\omega) = \int dA \, A \, p(A \mid \omega, x) \to A_0 \qquad \overline{A^2}(x,\omega) = \int dA \, A^2 \, p(A \mid \omega, x) \to A_0^2$$

- → Corresponds to the Gaussian uncertainty in the heteroscedastic loss
- reaches constant for perfect training
  - → reflects stochastic training data, bad hyperparameters, model expressivity,...
- → represents systematic uncertainty (aleatoric uncertainty)

for physicists  $\sigma_{
m like} 
ightarrow \sigma_{
m syst}$ 

network constructs uncertainty

Also works if training data has no uncertainty

### Bayesian Regression



#### **Ensemble of networks**



$$\mathcal{L}_{\text{BNN}} = \text{KL}(q_{\alpha}(\omega), p(\omega)) + \int d\omega \, q_{\alpha}(\omega) \sum_{j} \left[ \frac{(\overline{A}(x_{j}, \omega) - A_{j}^{\text{truth}})^{2}}{2\sigma_{\text{syst}}(x_{j}, \omega)} - \log \sigma_{\text{syst}}(x_{j}, \omega) \right]$$

# Example II

### Bayesian Tagger

## LHC analysis + ML





### Bayesian Jet Tagger



#### Prediction of Bayesian classifier



#### **BNN** classifier output

#### Statistical uncertainty

$$\sigma_{\text{pred}}^2 \equiv \sigma_{\text{stat}}^2 = \left[ d\omega \, q_{\alpha}(\omega) \left( p(c \mid x, \omega) - \mu_{\text{pred}} \right)^2 \right]$$

only statistic uncertainty

no additional parameter for syst. uncertainty

Class prediction

is only output

#### **BCE loss**

$$\mathcal{L}_{\text{BNN}} = \text{KL}(q_{\alpha}(\omega), p(\omega)) + \int d\omega \, q_{\alpha}(\omega) \left[ \sum_{j} y_{j}^{\text{truth}} \log p(c \mid x_{j}, \omega) + (1 - y_{j}^{\text{truth}}) \, \log(1 - p(c \mid x_{j}, \omega)) \right]$$

## We have to be careful though...

### Bayesian Jet Tagger



Classifiers have a non-linearity (sigmoid) in last layer to get  $p(c \mid x) \in [0,1]$ 

→ Leads to distortion of Gaussian shapes in general ▲





Have to check if still Gaussian after sigmoid!!

### Bayesian Jet Tagger





