Machine Learning for HEP

Lecture IV — Anomaly Detection
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CaloGAN
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JetGPT

[2305.10475] Flavor structure
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Jet Clustering
[2008.06064]
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[1903.11616, 2111.11466]
3D Pixel Clustering

[2007.03083] CATHODE
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Model Building
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Normalized AE
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CWoLA Hunting
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LHC analysis + ML
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Simulation or data-driven searches 9)
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*Taken from [Nachman et al: 2001.04990]



Simulation or data-driven searches 9)
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Community interest in AD

...and many papers:

LHC Olympics

[Kasieczka et al: 2107.02821,
2101.08320]

B Anomaly detection. v

e Learning New Physics from a Machine [DOI]
« Anomaly Detection for Resonant New Physics with Machine Learning [DOI]
» Extending the search for new resonances with machine learning [DOI]

e Learning Multivariate New Physics [DOI]

» Searching for New Physics with Deep Autoencoders [DOI]

e QCD or What? [DOI]

e Arobust anomaly finder based on autoencoder

 Variational Autoencoders for New Physics Mining at the Large Hadron Collider [DOI]
Detector High-Level o Adversarially-trained autoencoders for robust unsupervised new physics searches [DOI]

- L1 trigger :
collisions ] Trigger
» Novelty Detection Meets Collider Physics [DOI]

e Guiding New Physics Searches with Unsupervised Learning [DOI]
A D C 202 1 ‘ - - e Does SUSY have friends? A new approach for LHC event analysis [DOI]
J * Nonparametric semisupervised classification for signal detection in high energy physics
[Govorkova et al: 21 07'021 57] 40,000,000 100,000 e Uncovering latent jet substructure [DOI]

events/sec events/sec e Simulation Assisted Likelihood-free Anomaly Detection [DOI]

« Anomaly Detection with Density Estimation [DOI]

e A generic anti-QCD jet tagger [DOI]

« Transferability of Deep Learning Models in Searches for New Physics at Colliders [DOI]

e Use of a Generalized Energy Mover's Distance in the Search for Rare Phenomena at Colliders [DOI]
h 4 e Adversarially Learned Anomaly Detection on CMS Open Data: re-discovering the top quark [DOI]

« Dijet resonance search with weak supervision using 13 TeV pp collisions in the ATLAS detector [DOI]

Dark Machines = L https://iml-wg.github.io/HEPML-LivingReview [B] T
[Ostdiek et al: 2105.14027]

anomaly score


https://iml-wg.github.io/HEPML-LivingReview/

Community interest in AD

Available on the CERN CDS information server CMS PAS EXO-22-026

Machine Learning for Anomaly Detection in Particle CMS Physics Analysis Summary
Physics

Vasilis Belis'*, Patrick Odagiu'-*, and Thea Klzeboe Aarrestad'"

Contact: cms-pag-conveners-exotica@cern.ch 2024/03/20
lInstitute for Particle Physics and Astrophysics, ETH Ziirich, 8093 Zirich, Switzerland
“e-mail: vbelis@ethz.ch, podagiu@ethz.ch, thea.aarrestad@cern.ch
ABSTRACT Model-agnostic search for dijet resonances with anomalous

jet substructure in proton-proton collisions at /s = 13 TeV

The detection of out-of-distribution data points is a common task in particle physics. It is used for monitoring complex particle

detectors or for identifying rare and unexpected events that may be indicative of new phenomena or physics beyond the

Standard Model. Recent advances in Machine Learning for anomaly detection have encouraged the utilization of such

techniques on particle physics problems. This review article provides an overview of the state-of-the-art techniques for anomaly The CMS Collaboration

detection in particle physics using machine learning. We discuss the challenges associated with anomaly detection in large and

complex data sets, such as those produced by high-energy particle colliders, and highlight some of the successful applications

of anomaly detection in particle physics experiments.

n] 20 Dec 2023

[2312.14190] Abstract

This note introduces a model-agnostic search for new physics in the dijet final state.
Other than the requirement of a narrow dijet resonance with a mass in the range of
1800-6000 GeV, minimal additional assumptions are placed on the signal hypothesis.
Search regions are obtained by utilizing multivariate machine learning methods to
select jets with anomalous substructure. A collection of complementary anomaly de-
tection methods — based on unsupervised, weakly-supervised and semi-supervised
algorithms — are used in order to maximize the sensitivity to unknown new physics
signatures. These algorithms are applied to data corresponding to an integrated lu-
minosity of 138 fb ', recorded in the years 2016 to 2018 by the CMS experiment at the
LHC, at a centre-of-mass energy of 13 TeV. No significant excesses above background
expectation are seen, and exclusion limits are derived on the production cross section
of benchmark signal models varying in resonance mass, jet mass and jet substructure.
Many of these signatures have not previously been searched for at the LHC, making
the limits reported on the corresponding benchmark models the first ever and the
most stringent to date.

[CMS-PAS-EXO-22-026]



https://iml-wg.github.io/HEPML-LivingReview/

Two lypes of Anomaly Detection @

Outlier Detection Overdensities

(hon-resonant) (resonant)
- Searching for unique and unexpected events - Analagous to traditional bump hunt
- In HEP, this (might) appear in the tails of dist.
[2109.00546]
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Two lypes of Anomaly Detection @

Outlier Detection

(hon-resonant)

- Searching for unigue and unexpected events

- In HEP, this (might) appear in the tails of dist.

[2404.07258]

>0 = Signal
- Background

2.5 C | A (Signal Region)

0.5

0.
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4




Autoencoder for non-resonant AD

ENCODER P - - T T T T T T T |
T L | |
| ' | | bg
| ! ! 7)) TS
| Code /) | c Outlier
e : | | 3
| | !
| q>)~ ! | ('>u. I O
| O | — I
- |
) | h | 'S !
| =2 ! | o |
, & | S5
c ! -
LT : ! o ! L>L, reco loss
| ! I |
| ! . .
| | | ! - Use L > L, to cut interesting events
|
| | e e e e - :_ _______ 1 [Heimel et al: 1808.08979] [Farina et al: 1808.08992]
| e e e e e e e e e - 1 DECODER

© Fully unsupervised

* AE trained on Dbg. ® Complexity bias [Finke et al: 2104.09051}

I ® not invariant under coordinate
_ N2 |
L= N Z (AE(xi) xi) transformations [Kasieczka et al: 2209.06225]
l



Autoencoder for non-resonant AD

ﬂ EEN >
c Outlier
=
o ’,‘ .’0
submission © '
A Normalized Autoencoder for LHC Triggers o ‘
Barry M. Dillon?, Luigi Favaro!, Tilman Plehn!, Peter Sorrenson?, and Michael Kramer?> . -
1 Institut fiir Theoretische Physik, Universitat Heidelberg, Germany L > LC reco IOSS
2 Heidelberg Collaboratory for Image Processing, Universitdat Heidelberg, Germany
3 Institute for Theoretical Particle Physics and Cosmology (TTK), RWTH Aachen University,
Germany
o
June 23, 2023 [2206.14225) Use L > L~ to cut interesting events
" —— [Heimel et al: 1808.08979] [Farina et al: 1808.08992]

Submission ® Fully unsupervised

Anomalies, Representations, and Self-Supervision @ CO m p | exity b | as [Finke et al: 2104.09051]
Barry M. Dillon, Luigi Favaro, Friedrich Feiden, Tanmoy Modak, Tilman Plehn
_ u u .
Institut fiir Theoretische Physik, Universitiat Heidelberg, Germany @ n Ot | n Va rl a nt u n d e r CO O rd | n ate

January 13, 2023 [2301.04660] transformations [Kasieczka et al: 2209.06225]




Two lypes of Anomaly Detection @

Overdensities

(resonant)

- Analagous to traditional bump hunt

[2109.00546]

A
a.u. S

SB § SR | SB m

Pdata(x|m € SB)
= Ppg(z|m € SB)

Pdata(x|m € SB)

ata € SR
Paata 2| ) Z Prg(z|m € SB)




Resonant AD as a search strategy @

Sideband Signal Region Sideband

Goal: observe new
physics signal...

>~

.

C

A ...above the SM

RS background
S
" Templafe
Data

o‘“f’;e"
S\e@& M



Resonant AD as a search strategy @

Neyman-Pearson Lemma

pdata(x)

R = Jeband Signal Region Sidebana
pbg(x)
T Goal: observe new

Optimal physics signal...

hypothesis test

...above the SM

** ldealized anomaly detector (IAD) ~ background

+%* Best you can do if... SM
Tem /
...you know p,., and p, Plate
_V_l
ML

** Use R as cut discriminant M
~R>R

Data




How to get the optimal test statistic?

Classifier

If we have samples from
data and SM background...

...an optimal classifier yields

P data(x)
pdata(-x) T pbg(x)

J(x) =

o Getx ~ py,, and x ~ py, from
MC simulations

** Estimate samples from data:

X ~ Paata(X | SR)
X ~ PagalX | SB) & ppy(¥)

Density estimator

Instead of learning the
likelihood ratio directly...

...use a density estimator to learn

PoXISR) = paa(x| SR)
po(x|SB) = py (x)

** Then calculate R directly from
the individual likelihoods




Example |
CWolLa Hunting

Metodiev, Nachman, Thaler [1708.02949]
Collins, Howe, Nachman [1805.02664]



Reminder — Classification Problem

Goal: learn the signal to
background ratio

An optimal classifier yields the
likelihood ratio

fx)  Psig)

R .. .= =
P10 prgl®)

@ Can be approximated with a
supervised classifier (ML)

© Labels are not available in
experimental data

@ signdl

@ Background



Classification without labels (CWolLa) @

Two mixed datasets with signal fractions w;

PO = w; Pyg(x) + (1 = ) Py (®)

Classifier gives likelihood ratio
R

Wi Roptimal(x) + (1 - Wl)
mixed —

Wr Roptimal(x) T (1 o W2)
@ Monotonic function

— optimal on mixed = optimal on pure sample ® signal

— Basis of weak supervised classification @ Background

Metodiev, Nachman, Thaler [1708.02949]



Supervised versus IAD

Bg. Template Data in SR Background Signal

® signadl
@ Background

R _ pdata('x) R | _ psig(x)
IAD pbg (JC) supervised pbg (X)

= €Rsupervised + (1 —¢)




CWolLa Hunting

LHC Olympics

[Kasieczka et al: 2107.02821,
2101.08320]

Sideband Signal Region Sideband
Resonant
observable m; = m, > my, my >
Other . ) ; ~ .
features X = {mx, mY, Am TQ(,I), ( )} emP/Ofe
Data
e e

pbg(x‘ € SR) d pbg(-x‘ TS SB) i pbg(x)

[1902.02634]



CWolLa Hunting

CWola Likelihood estimate

R pdata(x ‘ SR) p data(x ‘ SR)
CWola = bg(x ‘ SB) pbg(x ‘ SR)

Resonant

observable m; = m, > my, my

Other

_ D Q2
features X = {my, my, Am; 72(1), ( )}

pbg(x‘ TS SR) ~ pbg(-x‘ i € SB) ~ pbg(x)

[1902.02634]



Can we do better?



ANOmaly detection with Density Estimation (ANODE)



ANODE

CWolLa Likelihood estimate ANODE Likelihood estimate
R B R B pa)l(x ‘ SR) y pdata(x ‘ SR)
CWoLa q ANODE P (XISR)  Ppg(x[SR)
Sideband Signal Region Sideband
The ANODE method
o NF > Interpolate
pa)o(x | m) =~ Pbg(x |m)  Trained in m € SB g -
e re’"p/;f
pwl(x | M) =~ pyo(X|m) Trained in m € SR ) Data
\ ’5\6:3"
NF %a"‘) M

[2001.04990]



Are we already happy?



CWOoLA versus ANODE

CWola Likelihood estimate

R - pdata(x ‘ SR)
CWolLa Poe ()C ‘ SB)

Pros and cons:

@ Classification is easy and precise

© Sensitive to correlations between

m;; and other features x

[1902.02634]

ANODE Likelihood estimate

P, (XISR)
ANODE — Pwo(x 'SR)

Pros and cons:

@ Robust against correlations

© Less powerful and sensitive
than classification

[2001.04990]




Can we get the best of both worlds?



Classifying Anomalies THrough Outer Density Estimation (CATHODE)



Best of both worlds — CATHODE 0

The CATHODE method CATHODE Likelihood estimate

Pdaa* | SR)  Pgara(x | SR)

pa)o(x | m) ~ pbg(x |m) Trained inm € SB

TS

1. Interpolate SM background template
to SR and sample:

R — ~
CATHODE = (xISR)  pe(x[SR)

Sideband Signal Region Sideband

Interpolate
X =
fog ~ Puy(X|m € SR) = py (x| SR) P
O -
2. Then train classifier between SM Temp,%
Xpg @nd X ~ py.., (x| SR) as in CWoLA Data
Ny M

[2109.00546]



How do they compare?



How to quantify improvement? @

Sidebana Signal Region Sidebana

Data

Statistical S AD | S - € _ S s 4— |mprovement
significance: /B VB - €p B |1/€z factor



Results — Comparison 34,

. . S/VB
0.0 Signal Region 2.14 1.35 1.02 0.68 0.51 0.34 0.17
Supervised 17.5 7 i
17.5 - |dealized AD § 150 - i
o CATHODE =
9 15.0- CWola = 12.5 - -
3 ANODE 5
5 12.5 - ~andom »n 10.0 - -
S D
% 10.0 - o 757 -
L
©) Q
(- < 50 —h sssssssssssnsssssnnninnnnnnn r RS RN A= s s ssssnnnannnnnhannns .—
S 727 =S .
Y= 5 25 I RARREEELEEERREEERERRRRERREL VDAL b QEGEEEEERERLIEELE i
5 5.0- £ CATHODE e
ik (ZU 0.0 A CWola —»— Supervised -
2.5 - —— ANODE —— |dealized AD
S~ —2.5 - :
0.0 I_ llllllllllllllll el R | | | 0-60 0.40 0.30 0-20 0.15 0.10 0.05
0.0 0.2 0.4 0.6 0.8 1.0 S/B (%)

Signal Efficiency (True Positive Rate)



Are there other ways?



ML techniques to construct SM template

SALAD [2001.05001]

Sideband Signal Region Sideband

P
‘0
(-
0
A

‘ Reweight ' Simulation

M Templwe Data
M
Sideband Signal Region Sideband

2
‘0
(-
0
A

Simulation

>
y e
0
-
)
O

CATHODE 12109.00546]

Sideband Signal Region Sideband

Interpolate

SM TemPIQfe DCI"G
M
Sideband Signal Region Sideband

SM Tempque Data



ML techniques to construct SM template @

The Interplay of Machine Learning—based

Resonant Anomaly Detection Methods

Tobias Golling,” Gregor Kasieczka,” Claudius Krause,° Radha Mastandrea,?¢ Benjamin
Nachman,®/ John Andrew Raine,” Debajyoti Sengupta,® David Shih,9 and Manuel
Sommerhalder®

“ Département de physique nucléaire et corpusculaire, Université de Genéve, 1211 Genéve, Switzerland
® Institut fiir Experimentalphysik, Universitat Hamburg, 22761 Hamburg, Germany
“Institut fiir Theoretische Physik, Universitit Heidelberg, 69120 Heidelberg, Germany
4 Department of Physics, University of California, Berkeley, CA 94720, USA
¢ Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
! Berkeley Institute for Data Science, University of California, Berkeley, CA 94720, USA
NHETC, Dept. of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, USA
E-mail: tobias.golling@unige.ch, gregor.kasieczkaQuni-hamburg.de,
claudius.krause@thphys.uni-heidelberg.de, rmastand@berkeley.edu, bpnachman@lbl.gov,
john.raine@unige.ch, debajyoti.sengupta@unige.ch, shih@physics.rutgers.edu,

manuel . sommerhalderQuni-hamburg.de

ABSTRACT: Machine learning—based anomaly detection (AD) methods are promising tools for extend-
ing the coverage of searches for physics beyond the Standard Model (BSM). One class of AD methods
that has received significant attention is resonant anomaly detection, where the BSM physics is as-
sumed to be localized in at least one known variable. While there have been many methods proposed
to identify such a BSM signal that make use of simulated or detected data in different ways, there has
not yet been a study of the methods’ complementarity. To this end, we address two questions. First,
in the absence of any signal, do different methods pick the same events as signal-like? If not, then we
can significantly reduce the false-positive rate by comparing different methods on the same dataset.
Second, if there is a signal, are different methods fully correlated? Even if their maximum performance
is the same, since we do not know how much signal is present, it may be beneficial to combine ap-
proaches. Using the Large Hadron Collider (LHC) Olympics dataset, we provide quantitative answers
to these questions. We find that there are significant gains possible by combining multiple methods,
which will strengthen the search program at the LHC and beyond.

[2307.11157]




Can we do even better?



Residual ANODE (R-ANODE)



R-ANODE

The ANODE method R-ANODE Likelihood estimate

pwo(x ‘ m) = pbg(x ‘ m) Trained in m € SB Po, (x | SR) p31g(x ‘ SR)

R —
RZANODE =0, " (x|SR)  Phe(x|SR)

¢ Sideband Signal Region Sideband

The R-ANODE method

2
Pdara | SR) = w pio (x| SR) + (1 — w) pp (x| SR) a o\
T f M Tompye.
Data
NF NF )
Py (x| m) Po,(X 1 m) T M

Trained in m € SR Trained in m € SB



Results — R-ANODE 0

Nsig =1000 Nsig = 300
16- —— supervised 16 —— supervised
Ada, —— |AD-BDT 14 - —— |AD-BDT
14- ANODE ANODE
19 - —— R-ANODE (ideal) 12 - —— R-ANODE (ideal)
R-ANODE (learned) —— R-ANODE (learned)
10- 10-
@ @) .
H 8- n S
6- o
'] 7
4 -
2 -
2 i
0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Signal efficiency Signal efficiency



Results — R-ANODE

Nominal significance
0.2 0.3 0.5 0.6 1.0 1.1 Nsig = 300

> | —— IAD-BDT | 16- —— supervised
ANODE _ —— |AD-BDT
—— R-ANODE (ideal) 14 ANODE
109 R-ANODE (learned) 17 —— R-ANODE (ideal)

—e— supervised —— R-ANODE (learned)

oo
I

10 -

SIC

Significance at FPR=1e-3

S N B~ O 0

s 150 225 300 50 500 0.0 0.2 0.4 0.6 0.8 1.0
Number of signal events Signal efficiency



More sources?



ML lecture notes

Modern Machine Learning for LHC Physicists

Tilman Plehn®; Anja Butter®®, Barry Dillon®,
Theo Heimel?, Claudius Krause®, and Ramon Winterhalder?

¢ Institut fiir Theoretische Physik, Universitdt Heidelberg, Germany
® LPNHE, Sorbonne Université, Université Paris Cité, CNRS/IN2P3, Paris, France
< HEPHY, Austrian Academy of Sciences. Vienna, Austria
4 CP3, Université catholique de Louvain, Louvain-la-Neuve, Belgium

April 15, 2024

Abstract

Modern machine learning is transforming particle physics fast, bullying its way into our numerical tool box. For young
researchers it is crucial to stay on top of this development, which means applying cutting-edge methods and tools to the full
range of LHC physics problems. These lecture notes lead students with basic knowledge of particle physics and significant
enthusiasm for machine learning to relevant applications. They start with an LHC-specific motivation and a non-standard
introduction to neural networks and then cover classification, unsupervised classification, generative networks, and inverse
problems. Two themes defining much of the discussion are well-defined loss functions and uncertainty-aware networks.
As part of the applications, the notes include some aspects of theoretical LHC physics. All examples are chosen from
particle physics publications of the last few years.'

2211.01421v3 [hep-ph] 12 Apr 2024

1V

e Check lecture notes for more
details and applications

Plehn, Butter, Dillon, Heimel, Krause, RW [2211.01421]



HEPML Living Review

N  HEP ML Living Review @ Q Search

Home Recent About Contribute Resources Cite Us

GitHub
w246 %78

A Living Review of Machine Learning for Particle Physics

Modern machine learning techniques, including deep learning, is rapidly being applied, adapted, and developed for high energy
physics. The goal of this document is to provide a nearly comprehensive list of citations for those developing and applying these
approaches to experimental, phenomenological, or theoretical analyses. As a living document, it will be updated as often as
possible to incorporate the latest developments. A list of proper (unchanging) reviews can be found within. Papers are grouped
into a small set of topics to be as useful as possible. Suggestions are most welcome.

Expand all sections Collapse all sections
Reviews
B Modern reviews >
B Specialized reviews >
§ Classical papers >
§ Datasets >

* Check LivingReview for many
ML4HEP applications

Reviews
Modern reviews
Specialized reviews
Classical papers
Datasets
Classification
Parameterized classifiers
Representations
Targets
Learning strategies
Fast inference / deployment
Regression
Pileup
Calibration
Recasting
Matrix elements
Parameter estimation

Parton Distribution Functions
(and related)

Lattice Gauge Theory
Function Approximation
Symbolic Regression

Eauivariant networks.



https://iml-wg.github.io/HEPML-LivingReview/

Summary and Outlook

Take-home messages Future exercises

* ML beneficial in every step of the * Full integration of ML-based methods into
simulation and analysis chain standard tools — Taggers, MadGraph,....

* We find both proof-of-concepts as well as  Make everything run on GPUs and
established use cases (— AD, MadNIsS,...) make it differentiable

Foster deeper collaboration between

* Interesting interplay between physics and ML
theory, experiment, and ML community

— Physics provides ~infinite data for ML

— Physics requirements (precision, symmertries,...)
different than industry applications

Shower Hadronization Detectors

g ‘,.% ] >




