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Lecture Content

1. Introduction to Predictions at Colliders
» Fundamentals: Fields/Interactions, Partons/Asymptotic
Freedom

» Cross-section breakdown: Collinear Factorization + PDFs,
Perturbative Expansion, Real-Virtual Decomposition.

2. Modern Techniques for Feynman Diagrams

» Tree-level: Helicity/Color, Recursive Methods
» One-loop: Regularization, Master Integral Reduction, Unitarity
» Two-loop (and beyond): Frontiers and difficulties.
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A Collision at the LHC
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Precise Perturbative Predictions

» To understand collider data, we need precise SM predictions.

» Perturbation theory is our major tool for making predictions.

olas] ~ oLo + asdonro + aZdonnio + O(ad).

» As a LHC is a proton machine, we will focus on QCD.
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A Physical Picture for pp Scattering

» Proton-proton collision. Initial
state: non-perturbative QCD.

» High energy (fundamental)
interactions occur in the centre.

» Produced particles emit QCD
radiation and hadronize.

How can we build a quantitative description of the collision,
making use of perturbation theory?
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Quantum Chromodynamics: A Field Theory
» 38 gluon fields A}L, . Aﬁ, 3Nr quark fields w{, ey 1,!)3’:.

P Interactions neatly described by Lagrangian:

1 -

Lqoop = F(id — me)yf — 2P ks - gVl ATV
N——— N’
_ ~—
‘CDU‘&C EYM Lq/g—int

a a a b pc
where Fiv = 0uA) — 0L AT, + 8sfabc AAL

fabe, T; = SU(N.) group theory factors.

y

QCD: “The SU(N.) gauge theory of quark/gluon interactions”.
N. = 3 “colours”, Nf = 6 flavours of quark.
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QCD Fundamentals
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Building Blocks of Perturbative QCD

» Field propagators

1 g
) J I(SUP a’“fo‘o‘o‘o‘cxbﬂ/ _,5abg72
» Interaction vertices:
a, a1
fabc W (e P
— g T, q, Lk _ &g (y,, p) )
2 +&"(p—q)
i J b,v p &P +g”(q — k)]
aa//[/ d,o’

7I-g2[fabe deeg“p(gVU o g;u';gup)
+ face fbde(g/u/gpcr o gpagup)
b, b c.p + fade fbce(guugpo o gupguo)]’
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QCD Fundamentals
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Asymptotic States in QCD

» Asymptotic states in perturbation theory are from free theory:
i@——— «— u(p) A’ 600000 «— cu(p)

» For QCD the free fields are the quarks and gluons.

> But! Asymptotic states of the interacting theory are hadrons.

First question when using perturbative QCD: fundamental degrees
of freedom do not appear as asymptotic states!
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The QCD Coupling and Asymptotic Freedom

» Coupling constants in QFT run! Captured by “S-function”:

B = uza s(p?) = 2;(b0+[ }b1+ ) aszi-

» At leading order (one-loop), introducing reference scale pq:

= + —lo
as() ~ as(uo) | 2n /1)

» In QCD by > 0, so lim,_o as(p) = 0.

11 2
bo = —Ne — =Ny
0 3 c 3 f

» as(M,) ~ 0.12 = pQCD applicable at hadron colliders!
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Collinear Factorization

P At high energy, proton-proton scattering “factorizes” into
scattering of underlying partons (quarks + gluons).

> do = Y [y (0)605)doisx.),
ij

» dopp built from do;; and “parton distribution functions”.
» This is an approximation. Valid up to O(Aqcp/ Q).

» Must include parton shower/hadronization. [Marius' lectures]
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QCD Fundamentals
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Parton Distribution Functions

fi(x, Q%): “probability of finding parton
i with momentum fraction x when
probing proton (P) at scale Q2.

> Not perturbatively calculable! Determined from data.

» PDFs satisfy (perturbatively calculable) evolution equations.

a 2 1
02802 H(x, Q%) = 252(7?)/ dz P;(z) f(x/z, Q2).
j X N—

splitting
functions

[Dokshitzer, Gribov, Lipatov, Altarelli, Parisi]
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Building Blocks of Perturbative Predictions
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Partonic Cross Sections

ky o, 1
k"2 ky B 1 5
o= d®,|A(p1, p2; ki, - - - kn)|

d3k.
¢, = L (2m)*6™) - ki
” e , d H (27r)3E,-( )% <P1+P2 z’: >

2
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Partonic Cross Sections

ky o 1
k1 2 ..kn B 1 dq) ,
7= 5 olA(pL, P2, K1, - - ki)

d3k;
do, = L (27)*6™) - Tk
m e p H (27T)3E,'( 7T) 6 P1+P2 z]:

2

» d®, integration: observable-dependent, Monte-Carlo.
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Cross Sections
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Partonic Cross Sections

kyo, g 1
kol ke o= Z/dd)n \A(p1, P2, ki, . . . kn)[?
squared amplitude
e do, =] ¢k 2m)* 6™ ( prtpa—> ki
P P2 n— i (27’(’)3E,' pP1Tp2 i i

» d®, integration: observable-dependent, Monte-Carlo.

» A: Feynman diagram sum, contains fundamental interactions.

g9 g ; g
Agggg:M +M+m+%+o(£)
g g g g N—

loops
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Partonic Cross Sections

kyo, g 1
kol ke o= Z/dd)n |A(p1, P2, ki, . . . kn)[?
squared amplitude
e do, =] @k 2m)* 6™ ( prtpa—> ki
P P2 n— i (27’(’)3E,' pP1Tp2 i i

» d&, integration: observable-dependent, Monte-Carlo.

» A: Feynman diagram sum, contains fundamental interactions.

g g 7 g
= e T Tt
8888 ’ + M + + s + 0(g5)
g g loops
» NB: Squaring amplitude mixes contributions at higher orders
|A©@ 4 g2 AN .. 2= | AO) 24 g2 [A*(O)A(l) + A*(l)A(O)] +0(gd).
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Partonic Cross Sections

kyo, g 1
kol ke o= Z/dd)n |A(p1, P2, ki, . . . kn)[?
squared amplitude
e do, =] @k 2m)* 6™ ( prtpa—> ki
P P2 n— i (27’(’)3E,' pP1Tp2 i i

» d&, integration: observable-dependent, Monte-Carlo.

» A: Feynman diagram sum, contains fundamental interactions.

g g 7 g
Agggg:M +M+m+%+0(£)
? ? g g loops

» NB: Squaring amplitude mixes contributions at higher orders
A 4 g2AM 4. 2= | A0 242g2Re [ AOAD] + O(gD).
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Amplitudes at Leading Order
P Let us consider the Drell-Yan process at leading order.
a(p1) . l(p4)

, _ . 0!
iA(12,27,30 4l ) = >AN<
q(p2) (pa)

q(po,

181y

= Vs,(p2)(—ieqg)y" djjus, (p1)Us,(Pa) (—ierg)y” vsy(p3)-
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Amplitudes at Leading Order

P Let us consider the Drell-Yan process at leading order.

. q(p1) o l(p4)
iA(12,27,30 4l ) = >vw<
q(p2) 1(p3)
_ . _ - . v
= Vau(P2)(~Teqg)7" 0ius, (p1)Ts, (pa) — = (~ie1g)y" ey (ps).
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Amplitudes at Leading Order
P Let us consider the Drell-Yan process at leading order.
a(p1) . l(p4)

, _ . 0!
iA(12,27,30 4l ) = >\NV\<
q(p2) (pa)

q(po,

181y

= Vg, (p2)(—ieqg)y" dijus, (P1)Us, (Pa) (—ie1g)y" ve (P3)-
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Amplitudes at Leading Order

P Let us consider the Drell-Yan process at leading order.

. q(p1) % l(p4)
iA(12,23,30,,4L) =
q(p2) I(p3)

181y

= Vs, (p2)(—leqg)y"dijus, (p1)Us, (Pa) (—ie1g)y" ve,(p3)-
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Amplitudes at Leading Order

P Let us consider the Drell-Yan process at leading order.

q(p1) . l(p4)

Y
! 7
iA(1Z,29,3, ,4,) = >/\NV\,<
q(p2) I

)

*iguu

= Vs,(p2)(—ieqg)v"djjus, (p1)Us,(pa) (—ierg)y” vs;(p3)-

> Average over states/color for unpolarized cross-section:

4

ZW " tr [(gh— ma)v" (B + ma)v"] tr [(h+mi)* (g — ma)n"] -

5/(7’]

Ben Page

Fixed Order QCD: Part 1



Amplitudes at Leading Order

P Let us consider the Drell-Yan process at leading order.

q(p1) . l(p4)

_ + i
iA(1g,27,3,,4L) = >/\NV\,<
q(p2) (p3)

a(po

*iguu

= Vs,(p2)(—ieqg)v"djjus, (p1)Us,(pa) (—ierg)y” vs;(p3)-

> Average over states/color for unpolarized cross-section:

11 24e2e?g*
20 Z|A2|Z % [(p1-pa)(p2-p3) + (p1-p3)(p2-pa) + mf,(P3'P4) +--].

Skoi 12

» Amplitude (and square) just rational functions of kinematics.
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Cross Sections
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Amplitudes Beyond Leading Order

P Loop-corrections to scattering amplitude are integrals!

P1 / P2
o N()
? = /[ T T
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Amplitudes Beyond Leading Order

P Loop-corrections to scattering amplitude are integrals!

P1 / P2
o N()
? = /[ T T

» High-energy contribution unbounded! = renormalization.

Ey ~ oo, og — aR(Qz).
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Cross Sections
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Amplitudes Beyond Leading Order

P Loop-corrections to scattering amplitude are integrals!

P1 / P2
o N()
? = /[ T T

» High-energy contribution unbounded! = renormalization.

Ey ~ oo, og — aR(Qz).

> Massless particles: unbounded contribution from infra-red.

P1 ) P2 P1 P2
(~0 = f ? {~\pi = \%g/

soft collinear

Ben Page
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QCD Fundamentals

Cross-Sections at Next-to-Leading Order
Kinoshita-Lee-Nauenberg Theorem (KLN)

Must include contributions from physically indistinguishable o.

O7NLO :2/ do,Re | A7 AT + / Ay 1| AL 2

virtual real
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QCD Fundamentals

Cross-Sections at Next-to-Leading Order
Kinoshita-Lee-Nauenberg Theorem (KLN)

Must include contributions from physically indistinguishable o.

O7NLO :2/ do,Re | A7 AT + / Ay 1| AL 2

virtual real

» Real contribution from singular emission. E.g. eTe™ —qg+g:

D1 Py P2 Dl Py j2)

Ae* e~ —qqg == +

» Indistinguishable to eTe™ — qq if g is soft or collinear to q/q.
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Practical Infra-Red Divergences

» Divergences cancel between loop and phase-space integrals.

donLo = / d®pia AT +2 / a®, Re | A; 0 AP .
—_— —

finite ~ -
divergent divergent

» Difficulty: how to perform Monte-Carlo numerically?

Ben Page
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Practical Infra-Red Divergences

» Divergences cancel between loop and phase-space integrals.

SonLo = / Ao, 1A 2 12 / d®, Re [A’;(O)A(nl)} :
~—— LR

finite ~ -
divergent divergent

» Difficulty: how to perform Monte-Carlo numerically?

» Reorganize calculation: cancel divergences before integration.

donLo = / dd, |An+1 - / do, {2Re (A*<0>A 1> / do, 5}.

finite finite

» Industry of subtraction/slicing methods. [Marius' Lectures]

Ben Page
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Cross Sections
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Which Amplitudes for the LHC?

» as(u) grows as p falls = multi-jet processes prevelant.

» as(M;) ~ 0.1. Rule of thumb:

» LO gives qualitative picture.
» NLO gives quantitative picture.
» NNLO reasonable error bars.

> Many processes have tree-level at leading order

> NB: Loop induced processes have loop at leading order!
Aggst = [ﬁ]} +-- -]+a5 [:i§> +-- } +a? [Eﬁé} +-- -}+O(a§).

Ben Page
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Cross Sections
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Feats of Perturbation Theory
> All multiplicity n-gluon amplitude known analytically:
(12)*
(12)(23) -+ ((n — 1)n)(n1)’
where (ab) = TU_(ka)us(ks). [Parke, Taylor]
» NLO predictions for W + 5j.

w e w e w e
q ) q q

- o= a+ +) —
A(17,27,35,...,nf) =

9 g Q2
g g (
9 ] 5122
; A _ A
90200000000 g @ Q@ @

» Two-loop amplitudes for W + 2j production.

Ben Page
Fixed Order QCD: Part 1




Cross Sections
ooe

Part 1 Summary

P Factorization connects protonic to partonic scattering.
Aqcp
do =" [dxidxfi(x)f(x)doyj(xi, ) + O 0 )
i7j
» Beyond LO, infra-red divergences cancel between real/virtual.

doNLO = 50’,(7(_)31 —{—50’,(,1),
—_——

real virtual

> Two major ingredients required for fixed order predictions:

» Scattering amplitudes: Covered in this lecture.
» Real/virtual cancellations: See Marius' lectures.

Ben Page
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Fixed Order QCD Calculations

Part 2: Adventures in Perturbation Theory

Ben Page
University of Ghent

BND Graduate School
2nd _ 12th September 2024

Ben Page

Fixed Order QCD: Part 2



Tree-Level
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Tree-Level
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Tree-Level
o] ]

Complexity of Feynman Diagram Approach

g
) ) )
: :
g 9, g g k) g
e
; ;
9 g

» Consider multi-parton

scattering at tree level. }{mm}qﬁ m%iﬁz:ﬁ
MR RO
» Huge number of diagrams MWM% X
for high multiplicity. PR E
Process | n=7 | n=8
» Diagram expressions large. g&—ng | 559,405 | 10,525,900
q§—ng | 231,280 | 4,016,775

Major tools: “Quantum number management”, recursion relations.

Ben Page

Fixed Order QCD: Part 2



Tree-Level
[ o]

Colour in Scattering

» Useful to break down amplitude into colour and kinematics.
A=SGA
i
> Many all multiplicity colour statements understood, e.g.
(0) _ o1 T a0 on) 4(0)
A"‘g|U°n - Z tI‘(Ta 172 T )‘An—gluon (Jla 02, " Un) .
0ESL/Zn

» Individual A; are easier to compute as fewer diagrams.

° An—gluon

An—gluon
[ ]

Log(# diagrams)
- N w S o =2 ~

3 4 5 6 7 8 9 10
multiplicity

Ben Page
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Tree-Level
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Helicity Amplitudes

» To calculate a scattering amplitude, must specify the state.

ec(p)  us(p)  vs(p) s=12

» Distinguished set of states with well defined helicity:

> Amplitudes with helicity states have compact form!

(12)*

A(1;,2,,35,...,nf) = (12)(23) -~ ((n — 1)n)(nl)’

g£’'78778" g

Ben Page
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Tree-Level
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On-Shell Recursion

P In “on-shell” limits amplitudes factorize:

P1 Pe
P2 pPs =
P3 P4 P3 P4

Ben Page
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Tree-Level
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On-Shell Recursion

P In “on-shell” limits amplitudes factorize:

P1 Pe
P2 P5
P3 P4 P3 P4

./4[_ _Pk .AR /'5,’(77...,/7
R % £)Ar( )

[Britto, Cachazo, Feng, Witten]
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Tree-Level
[ Jele}

On-Shell Recursion

P In “on-shell” limits amplitudes factorize:

./4[_ _Pk .AR /'5,’(77...,/7
Yy ) Ar( )

[Britto, Cachazo, Feng, Witten]
» Very useful for building compact analytic results, e.g.

4 B 1 (1]2+3]4]3 (3|4+5|6]3
L5 25 35 4% 6~ (5[3442] ([23][34](56) (61) 5234 [61][12](34)(45>s345>

Ben Page
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Off-Shell Recursion (i): Organizing Feynman Diagrams

Consider the trivalent diagrams contributing to Agtree).
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Off-Shell Recursion (i): Organizing Feynman Diagrams

Consider the trivalent diagrams contributing to Agtree).
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Tree-Level
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Off-Shell Recursion (i): Organizing Feynman Diagrams

Consider the trivalent diagrams contributing to Agtree).

1 1 2
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Tree-Level
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Off-Shell Recursion (i): Organizing Feynman Diagrams

Consider the trivalent diagrams contributing to Agtree).
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Off-Shell Recursion (i): Organizing Feynman Diagrams

Consider the trivalent diagrams contributing to Agtree).

1 1 2 1

4 4
1 1 1 \ .
< 2
2 2 3
+ 3
43 4 4
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Tree-Level
(o] lo}

Off-Shell Recursion (i): Organizing Feynman Diagrams

Consider the trivalent diagrams contributing to Agtree).

1 1 2 1

The diagram sum can be (recursively) organized into currents.

Ben Page
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Tree-Level
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Off-Shell Recursion (ii)

Let us consider gluons, introducing the off-shell current J*

Ben Page

Fixed Order QCD: Part 2



Tree-Level
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Off-Shell Recursion (ii)

Let us consider gluons, introducing the off-shell current J*:

A(L,...,n) = lim €, p2T"(1,...,n—1),
pa—0

Ben Page
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Tree-Level
ooe

Off-Shell Recursion (ii)

Let us consider gluons, introducing the off-shell current J*:

A(L,...,n) = lim €, p2T"(1,...,n—1),
pa—0

JH satisfies the “Berends-Giele” recursion relation.

1 1

1 n—1 n—2 m-1 i
. i i1
4&: - Z i+1 + Z Z o
L =1 : i=1 j=it1 gt

n n

Efficient numerical implementation for high multiplicity O(n*).

Ben Page
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Loop Level Complexities

» Even larger diagrammatic combinatorics:

1 N i Y- BB
AY) ~ e Rk P g 29 B O g

yg:@:&mmw Hﬁmﬁmm:ﬁ::ﬁ%{

» Moreover, each and every term is a Feynman integral.

N()
D1D,D3D4Ds”

» How do we compute the integrals?
» How do we manage these large expressions?
» Can we build automated tools?

Ben Page
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One-Loop
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Dimensional Regularization

> Use “dim-reg” to tackle intermediate divergences.
4, = dDK,', where D =4 — 2e.

» Divergences arise as poles in €. E.g.

b1 P2
l

1 I .
~ = + Og(pi P2) +O(60).

2
soft/collienar collinear
» Major blocker to use of Monte-Carlo integration.

» Take limit D — 4 at end of calculation.

(D) = o(4) + O(e).

Ben Page
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One-Loop
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Master Integral Decomposition
We write A(°°P) in terms of a small set of master integrals:

AP (py . pa) =" Ci(prs- - pn) Zilpi- pj, P7> m7) -
k

rational functions master integrals

Building blocks:
» Coefficients C: process dependent.
P Integrals Zy: process independent, depend only on kinematics.

Divide and conquer approach

» How do we efficiently compute the rational functions?

» How do we numerically evaluate the master integrals?

Ben Page
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Integral Reduction

Many integrals. However, controlled by Lorentz invariance!

ey
D v v
/d gi@(ﬁ )2 = Agh” + Bp"'p”.

Ben Page
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Integral Reduction

Many integrals. However, controlled by Lorentz invariance!

ey
D _ v v
/d 6762(6—,3)2 = Agh” + Bpt'p".

Find A, B by contracting the equation with g"” and p*p":

2

dee—Zz(;f_pf B ( D p? ) < A >
. = 4

J Pt VAN

Ben Page
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Integral Reduction

Many integrals. However, controlled by Lorentz invariance!

/0
D v v
/d 8742(£_p)2 = Ag"” + Bpt'p”.

Find A, B by contracting the equation with g"¥ and p*p”

(e )-(2%)(5)
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One-Loop
000000000

Integral Reduction

Many integrals. However, controlled by Lorentz invariance!

/0
D v v
/d 8742(£_p)2 = Ag"” + Bpt'p”.

Find A, B by contracting the equation with g"¥ and p*p”

(e )-(2%)(5)

Gauge theory integrals same as scalar theory integrals!

Ben Page
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Master Integral Decomposition at One Loop

» External momenta are 4D = high-point integrals reduce, e.g.:

5
= Z G + 0(6)
i=1 i

> Altogether, we see that we can write a one-loop amplitude as:

SR IEHE COILN S EOILOS ADIES SRS

» Universal decomposition: valid for any process.

Efficient implementation of this decomposition was the missing
ingredient that allowed for the “NLO revolution” around 2010!

Ben Page
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Organizing by Unitarity

» Large number of terms. Break problem down by unitarity.

A0 _“

gg—8g
G

Discs, {A(l) } = /dcpA(O)

£888 88—88

Ben Page
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Organizing by Unitarity

» Large number of terms. Break problem down by unitarity.

; 1 _ 0 0 _“
Discs;, {Aé;gg} - / dq)A«(gg)ﬁggAég)ﬂgg -

» Compare to discontinuity of MI decomposition:

Discs,, [Agg)gg} = c1234)f__(+C(12)34><(+C12(34))><+ C(12)(34)>©<
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Organizing by Unitarity

» Large number of terms. Break problem down by unitarity.

A _“

gg—8g
G

Discs, {A(l) } = /dcpA(O)

£888 88—88

» Compare to discontinuity of MI decomposition:

Discs,, [Agg)gg} = c1234)f__(+C(12)34><(+C12(34))><+ C(12)(34)>©<

» (Integrand) factorization allows more fine-grained split up:
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Organizing by Unitarity

» Large number of terms. Break problem down by unitarity.

A _“

gg—8g
G

Discs, {A(l) } = /dcpA(O)

£888 88—88

» Compare to discontinuity of MI decomposition:

Discs,, [Agg)gg} = c1234)f__(+C(12)34><(+C12(34))><+ C(12)(34)>©<

» (Integrand) factorization allows more fine-grained split up:

» Exploit tree-level advances. Reduction performed numerically!

Ben Page
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One-Loop
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Automation!

> Automated unitarity-based strategy for integral reduction:
» NINJA, Samurai, CutTools.

> Many automatic tools for one-loop amplitude calculation®:

> GoSAM > Blackhat
» HELAC-1Loop > Njet

> OpenLoops > Recola
» MadGraph5_AMCGONLO > NLOX

* Many more developments: off-shell recursion for integrands, expansions
around singular configurations for stability, etc...

Numerical computations of high multiplicity (up to ~ 2 — 6)
one-loop amplitudes are readily available!

Ben Page
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One Loop Master Integrals

» One loop integrals well understood. At worst dilogarithms:

1 4 1
>Cx = — 4+ 2+ log(—s) + O(e).
2 3 €

1 4
2 —€ —€ 2\ —e 2 (%12 7(2
[512523] :6—2 [(—512) +(—512) _(_P4) ] — log (523> B ?
) 3 ; ‘
_ 2Li2 <]_ — P4) — 2L12 < - P4> + 0(6)
S12 523
sj = (pi + Pj)2

» Essentially all integrals necessary for collider physics known.
» Scalar integrals compiled in many libraries: LoopTools,
Golem95C, OneLOop, QCDLoop 2.0, Collier.

See e.g. [https://arxiv.org/pdf/1912.06823] for summary.

Ben Page
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Two-Loop
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Two-Loop (and Beyond)

Ben Page
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Two-Loop
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New Difficulties at Two Loops
» Two-loop diagrams now ~ 8-fold integral!

Ps
D Ds
! Dy

0002000000, /g é )
g 4y g M
» 8mmrm8 D; / d E d e 1 . DS

by pg

pa
» Soft/collinear divergences are more severe. (Up to 6%)
> Lorentz invariance insufficient to reduce to masters.

» Master integrals unknown. Computation mathematically deep.

Calculations handled case by case, understanding is built as we go.
Throw every trick we have at it: reduction, unitarity, approximate...
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Two-Loop
00@000000

Leading Colour Approximation

» In the leading-colour approximation, amplitudes can simplify.

» Consider 5-gluon amplitude

" 4+ 0(10000) diagrams.

00

4D _ g

O(N?)

» Often, complicated non-planar integrals are sub-leading in N,.

> O(10%) effect on donnLo- Important to study!

1
5UNNLO = (5O'|IQCN|_O + 0O (/\/2> .

Ben Page
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Master Integrals and Differential Equations

Aim: numerically evaluate € expansion: Zi(5,¢) = >°° _, Z"e"

> Master integrals satisfy differential equations.
dIk = Mk/(E,S,'j)I/.

> If integrals generalize logarithms can expose € structure
[Gehrmann, Remiddi '01; Henn '13]

dIk = € Mk/(s;j) I/.

regulator -
8 differential forms

> c-factorization facilitates expansion around 4d limit:

I,E”) — Z / I\7Ik,I,("_1) + constant.
a,l

Ben Page
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Two-Loop
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Numerically Solving the Differential Equation

Pentagon functions: [Gehrmann, Henn, lo Presti '18]

PentagonFunctions++

» Dedicated iterated integral code:

Il((n) - /01 dlog(Wi[ta]) - - /0t2 dlog(Wi[t1]).

» Very efficient for “high” multiplicity.

Series expanSiOnS: popularized by [Moriello '19]
» Patch together hy from power series:
I}(n) ~ Z(tf to)j1/2 |Og(t7 to)jz. OWG o8
Ji,2
» Codes: DiffExp/SeaSyde/AMFlow. 200[ h

[Hidding '20] [Armadillo et al '22] [Liu, Ma '22] -300

Ben Page
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Integration By Parts

P Lorentz-invariance not enough to reduce to master integrals.

» Further relations from “fundamental theorem of calculus”:

b
/3 dxF'(x) = F(b) — F(a).

Ben Page
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Integration By Parts

P Lorentz-invariance not enough to reduce to master integrals.

» Further relations from “fundamental theorem of calculus”:

b
/3 dxF'(x) = F(b) — F(a).

» In multiple variables this is “Stokes theorem”:

/dw:/ w.
R R
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Integration By Parts

P Lorentz-invariance not enough to reduce to master integrals.

» Further relations from “fundamental theorem of calculus”:

b
/ dxF'(x) = F(b) — F(a).

a

» In multiple variables this is “Stokes theorem”:

/dsz.
R

Must take into account “integration-by-parts” relations:
For Feynman Integrals total derivatives integrate to zero.

Ben Page
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Two-Loop
000000000

Reducing Two-Loop Amplitudes to Masters

» Reduction strategy for two-loops more pedestrian:

» Total derivatives induces many relations between integrals.

» Solve the linear system via Gauss elimination.

» Many public programs for IBP reduction: FIRE, FiniteFlow,
NeatIBP, LiteRed, Reduze, KIRA...

> NB: Analytic algorithm =- all two-loop results are analytic.

Large bottleneck for high multiplicity: solving relations analytically.

Ben Page
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Rethinking Computer Algebra: Analytic Reconstruction

» Analytic coefficients built from numerical samples via Ansatz.

Ck(le-'aPn):chkajk(Pla---apn)a cik € Q.

» Numerical evaluations provide constraints on unknown cj.

( (O)a---apn —> .‘ —>Cl )7apl(10))

» Made practical by finite field methods (working modulo p).
[Schabinger, von Manteuffel '14; Peraro '16]

» Sidesteps complex algebra — only intermediate numerics!

Ben Page
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State-of-the-Art Two-Loop Amplitudes
Five-Point NNLO QCD (no internal masses)

pp — 3j pp =y +J

’gm

[Abreu et al], [Agarwal [Agarwal et al],
et al], [De Laurentis et [Chawdhry et al],
al] [Badger et al]

pp — W + 2 H + bb

TUT0 00000 0005050

00900
00000

000000000 00000 —<—

[Abreu et al] [Badger
et al] (bb)

[Badger et al]

Four-Point QCD/EW @ NNLO (internal masses)

pp — Y

QQOQ

[Bonciani et al]

Ben Page

pp — Y +J

TTTTTTTT

e

[Armadillo et al]
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Outlook
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Elliptic Integrals

> At two-loops, functions go beyond logarithm generalizations.

> Example: two-loop sunrise integral, contains “elliptic” curve.

4

>@<N /01 dxlog(xix,y))7 [0 a)

i=1

eIIiptic curve

» No general understanding of special functions.

P Arise frequently in cases with internal masses in the loop, e.g.

t t

Ben Page
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Outlook
0000

New Frontiers
» 3-loop: pp — V +j [leading color], dijet, diphoton.

[Caola et al '21; Gehrmann et al '23]
» Some integrals for 4-jet production at NNLO.

[Henn et al '24]

Ben Page

Fixed Order QCD: Part 2



[e]e]e] )
Summary
> Amplitudes are a key bottleneck in making predictions.
» Modern understanding of perturbation theory has reached far.
» Tree-level /one-loop well understood (numerical algorithms).

» Frontiers:

» Two-loop: new theoretical challenges. Results almost always
analytic. Active area of research.

» > Three-loop in infancy. (No N"3LO 2 — 2 yet).

Ben Page
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