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Lecture Content

1. Introduction to Predictions at Colliders

▶ Fundamentals: Fields/Interactions, Partons/Asymptotic
Freedom

▶ Cross-section breakdown: Collinear Factorization + PDFs,
Perturbative Expansion, Real-Virtual Decomposition.

2. Modern Techniques for Feynman Diagrams

▶ Tree-level: Helicity/Color, Recursive Methods

▶ One-loop: Regularization, Master Integral Reduction, Unitarity

▶ Two-loop (and beyond): Frontiers and difficulties.
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A Collision at the LHC
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Precise Perturbative Predictions

▶ To understand collider data, we need precise SM predictions.

−→

▶ Perturbation theory is our major tool for making predictions.

σ[αS ] ∼ σLO + αSδσNLO + α2
SδσNNLO +O(α3

S).

▶ As a LHC is a proton machine, we will focus on QCD.
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A Physical Picture for pp Scattering

▶ Proton-proton collision. Initial
state: non-perturbative QCD.

▶ High energy (fundamental)
interactions occur in the centre.

▶ Produced particles emit QCD
radiation and hadronize.

How can we build a quantitative description of the collision,
making use of perturbation theory?
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QCD Fundamentals
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Quantum Chromodynamics: A Field Theory
▶ 8 gluon fields A1

µ, . . .A
8
µ, 3Nf quark fields ψf

1 , . . . , ψ
f
3 .

▶ Interactions neatly described by Lagrangian:

LQCD = ψf
i (i /∂ −mf )ψ

f
i

︸ ︷︷ ︸

LDirac

−
1

4
F a
µνF

µν
a

︸ ︷︷ ︸

LYM

− gsψf
i
/AaT a

ijψ
f
j

︸ ︷︷ ︸

Lq/g−int

.

where F a
µν = ∂µA

a
ν − ∂νA

a
µ + gs fabcA

b
µA

c
ν ,

fabc , T
a
ij = SU(Nc) group theory factors.

QCD: “The SU(Nc) gauge theory of quark/gluon interactions”.
Nc = 3 “colours”, Nf = 6 flavours of quark.
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Building Blocks of Perturbative QCD
▶ Field propagators

i j = iδij
1

/p −m
a, µ b, ν = −iδab

gµν

p2

▶ Interaction vertices:
a, µ

i j

= igγµT a
ij ,

a, µ

k

b, ν

q

c , ρp

=
gf abc [gµν(k − p)ρ

+ gνρ(p − q)µ

+ gρµ(q − k)ν ]

a, µ

b, ν c , ρ

d , σ

=
−ig2[f abe f cdegµρ(gνσ − gµσgνρ)

+ f ace f bde(gµνgρσ − gµσgνρ)

+ f ade f bce(gµνgρσ − gµρgνσ)],
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Asymptotic States in QCD

▶ Asymptotic states in perturbation theory are from free theory:

ψi ←→ u(p) Aa
µ ←→ εµ(p)

▶ For QCD the free fields are the quarks and gluons.

▶ But! Asymptotic states of the interacting theory are hadrons.

First question when using perturbative QCD: fundamental degrees
of freedom do not appear as asymptotic states!
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The QCD Coupling and Asymptotic Freedom

▶ Coupling constants in QFT run! Captured by “β-function”:

β = µ2
∂

∂µ2
αS(µ

2) =
α2
S

2π

(

b0 +
[αS

2π

]

b1 + · · ·
)

, αS =
g2
S

4π
.

▶ At leading order (one-loop), introducing reference scale µ0:

1

αS(µ)
=

1

αS(µ0)
+

b0

2π
log(µ2/µ20)

▶ In QCD b0 > 0, so limµ→∞ αS(µ) = 0.

b0 =
11

3
Nc −

2

3
Nf .

▶ αS(Mz) ∼ 0.12⇒ pQCD applicable at hadron colliders!
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Collinear Factorization

▶ At high energy, proton-proton scattering “factorizes” into
scattering of underlying partons (quarks + gluons).

i j
σij→X

fi fj

X

−→ dσ =
∑

i,j

∫

dxidxj fi (xi )fj(xj)dσi,j(xi , xj).

▶ dσpp built from dσi ,j and “parton distribution functions”.

▶ This is an approximation. Valid up to O(ΛQCD/Q).

▶ Must include parton shower/hadronization. [Marius’ lectures]
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Parton Distribution Functions

P

k
µ

(i , xkµ)

e

γ
∗ fi (x ,Q

2): “probability of finding parton
i with momentum fraction x when
probing proton (P) at scale Q2”.

▶ Not perturbatively calculable! Determined from data.

▶ PDFs satisfy (perturbatively calculable) evolution equations.

Q2 ∂

∂Q2
fi (x ,Q

2) =
∑

j

αS(Q
2)

2π

∫ 1

x

dz Pij(z)
︸ ︷︷ ︸

splitting
functions

fj(x/z ,Q
2).

[Dokshitzer, Gribov, Lipatov, Altarelli, Parisi]
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Building Blocks of Perturbative Predictions
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Partonic Cross Sections

p1 p2

dσ

k1
k2 kn

σ =
1

2s

∫

dΦn|A(p1, p2, k1, . . . kn)|
2

dΦn =
∏

i

d
3ki

(2π)3Ei

(2π)4δ(4)

(

p1+p2−
∑

i

ki

)
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Partonic Cross Sections

p1 p2

dσ

k1
k2 kn

σ =
1

2s

∫

dΦn|A(p1, p2, k1, . . . kn)|
2

dΦn =
∏

i

d
3ki

(2π)3Ei

(2π)4δ(4)

(

p1+p2−
∑

i

ki

)

▶ dΦn integration: observable-dependent, Monte-Carlo.
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Partonic Cross Sections

p1 p2

dσ

k1
k2 kn σ =

1

2s

∫

dΦn |A(p1, p2, k1, . . . kn)|
2

︸ ︷︷ ︸

squared amplitude

dΦn =
∏

i

d
3ki

(2π)3Ei

(2π)4δ(4)

(

p1+p2−
∑

i

ki

)

▶ dΦn integration: observable-dependent, Monte-Carlo.

▶ A: Feynman diagram sum, contains fundamental interactions.
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loops
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Partonic Cross Sections

p1 p2

dσ

k1
k2 kn σ =

1

2s

∫

dΦn |A(p1, p2, k1, . . . kn)|
2

︸ ︷︷ ︸

squared amplitude

dΦn =
∏

i

d
3ki

(2π)3Ei

(2π)4δ(4)

(

p1+p2−
∑

i

ki

)

▶ dΦn integration: observable-dependent, Monte-Carlo.

▶ A: Feynman diagram sum, contains fundamental interactions.
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s )
︸ ︷︷ ︸

loops

▶ NB: Squaring amplitude mixes contributions at higher orders

|A(0)+g2
s A

(1)+· · · |2= |A(0)|2+g2
s

[

A∗(0)A(1) +A∗(1)A(0)
]

+O(g8
s ).
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Partonic Cross Sections

p1 p2

dσ

k1
k2 kn σ =

1

2s

∫

dΦn |A(p1, p2, k1, . . . kn)|
2

︸ ︷︷ ︸

squared amplitude

dΦn =
∏

i

d
3ki

(2π)3Ei

(2π)4δ(4)

(

p1+p2−
∑

i

ki

)

▶ dΦn integration: observable-dependent, Monte-Carlo.

▶ A: Feynman diagram sum, contains fundamental interactions.
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s )
︸ ︷︷ ︸

loops

▶ NB: Squaring amplitude mixes contributions at higher orders

|A(0) + g2
s A

(1) + · · · |2= |A(0)|2+2g2
s Re

[

A∗(0)A(1)
]

+O(g8
s ).
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Amplitudes at Leading Order

▶ Let us consider the Drell-Yan process at leading order.

iA(1qs1 , 2
q
s2
, 3ls3 , 4

l
s4
) =

γ∗
q(p1)

q(p2)

l(p4)

l(p3)

= v s2(p2)(−ieqg)γ
µδijus1(p1)us4(p4)

−igµν
s12

(−ielg)γ
νvs3(p3).
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Amplitudes at Leading Order

▶ Let us consider the Drell-Yan process at leading order.

iA(1qs1 , 2
q
s2
, 3ls3 , 4

l
s4
) =

γ∗
q(p1)

q(p2)

l(p4)

l(p3)

= v s2(p2)(−ieqg)γ
µδijus1(p1)us4(p4)

−igµν
s12

(−ielg)γ
νvs3(p3).

▶ Average over states/color for unpolarized cross-section:

1

4

1

9

∑

sk ,i,j

|A2|=
e2qe

2
l g

4

12s212
tr
[
( /p2−mq)γ

µ( /p1+mq)γ
ν
]
tr
[
( /p4+ml)γ

µ( /p3−mq)γ
ν
]
.
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Amplitudes at Leading Order

▶ Let us consider the Drell-Yan process at leading order.

iA(1qs1 , 2
q
s2
, 3ls3 , 4

l
s4
) =

γ∗
q(p1)

q(p2)

l(p4)

l(p3)

= v s2(p2)(−ieqg)γ
µδijus1(p1)us4(p4)

−igµν
s12

(−ielg)γ
νvs3(p3).

▶ Average over states/color for unpolarized cross-section:

1

4

1

9

∑

sk ,i,j

|A2|=
24e2qe

2
l g

4

s212

[
(p1 ·p4)(p2 ·p3) + (p1 ·p3)(p2 ·p4) +m2

q(p3 ·p4) + · · ·
]
.

▶ Amplitude (and square) just rational functions of kinematics.
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Amplitudes Beyond Leading Order
▶ Loop-corrections to scattering amplitude are integrals!

ℓ
p1 p2

=

∫

d
4ℓ

N(ℓ)

ℓ2(ℓ− p21)(ℓ− p2)2
.
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ℓ
p1 p2

=

∫

d
4ℓ

N(ℓ)

ℓ2(ℓ− p21)(ℓ− p2)2
.

▶ High-energy contribution unbounded! ⇒ renormalization.

Eℓ ∼ ∞, α0 → αR(Q
2).
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Amplitudes Beyond Leading Order
▶ Loop-corrections to scattering amplitude are integrals!

ℓ
p1 p2

=

∫

d
4ℓ

N(ℓ)

ℓ2(ℓ− p21)(ℓ− p2)2
.

▶ High-energy contribution unbounded! ⇒ renormalization.

Eℓ ∼ ∞, α0 → αR(Q
2).

▶ Massless particles: unbounded contribution from infra-red.

ℓ ∼ 0 ⇒

ℓ
p1 p2

︸ ︷︷ ︸

soft

ℓ ∼ λpi ⇒
ℓ

p1 p2

︸ ︷︷ ︸

collinear
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Cross-Sections at Next-to-Leading Order

Kinoshita-Lee-Nauenberg Theorem (KLN)

Must include contributions from physically indistinguishable σ.

δσNLO = 2

∫

dΦnRe

[

A∗tree
n A1-loop

n

]

︸ ︷︷ ︸

virtual

+

∫

dΦn+1|A
tree
n+1|

2

︸ ︷︷ ︸

real
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Cross-Sections at Next-to-Leading Order

Kinoshita-Lee-Nauenberg Theorem (KLN)

Must include contributions from physically indistinguishable σ.

δσNLO = 2

∫

dΦnRe

[

A∗tree
n A1-loop

n

]

︸ ︷︷ ︸

virtual

+

∫

dΦn+1|A
tree
n+1|

2

︸ ︷︷ ︸

real

▶ Real contribution from singular emission. E.g. e+e−→qq+g :

Ae+e−→qqg =

pgp1 p2

+

pgp1 p2

▶ Indistinguishable to e+e− → qq if g is soft or collinear to q/q.
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Practical Infra-Red Divergences

▶ Divergences cancel between loop and phase-space integrals.

δσNLO
︸ ︷︷ ︸

finite

=

∫

dΦn+1|A
(0)
n+1|

2

︸ ︷︷ ︸

divergent

+2

∫

dΦn Re

[

A
∗(0)
n A

(1)
n

]

︸ ︷︷ ︸

divergent

.

▶ Difficulty: how to perform Monte-Carlo numerically?
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Practical Infra-Red Divergences

▶ Divergences cancel between loop and phase-space integrals.

δσNLO
︸ ︷︷ ︸

finite

=

∫

dΦn+1|A
(0)
n+1|

2

︸ ︷︷ ︸

divergent

+2

∫

dΦn Re

[

A
∗(0)
n A

(1)
n

]

︸ ︷︷ ︸

divergent

.

▶ Difficulty: how to perform Monte-Carlo numerically?

▶ Reorganize calculation: cancel divergences before integration.

δσNLO =

∫

dΦn+1

[

|A
(0)
n+1|

2−S
]

︸ ︷︷ ︸

finite

+

∫

dΦn

[

2Re
(

A∗(0)
n A(1)

n

)

+

∫

dΦ1S

]

︸ ︷︷ ︸

finite

.

▶ Industry of subtraction/slicing methods. [Marius’ Lectures]
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Which Amplitudes for the LHC?

▶ αS(µ) grows as µ falls ⇒ multi-jet processes prevelant.

▶ αS(Mz) ∼ 0.1. Rule of thumb:
▶ LO gives qualitative picture.
▶ NLO gives quantitative picture.
▶ NNLO reasonable error bars.

▶ Many processes have tree-level at leading order

A5g =

[

+ · · ·

]

+αS

[

+ · · ·

]

+α2
S

[

+ · · ·

]

+O(α3
s ).

▶ NB: Loop induced processes have loop at leading order!

Agg→H =
[

+ · · ·
]

+αS

[

+ · · ·
]

+α2
S

[

+ · · ·
]

+O(α2
s ).
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Feats of Perturbation Theory
▶ All multiplicity n-gluon amplitude known analytically:

A(1−g , 2
−
g , 3

+
g , . . . , n

+
g ) =

⟨12⟩4

⟨12⟩⟨23⟩ · · · ⟨(n − 1)n⟩⟨n1⟩
,

where ⟨ab⟩ = u−(ka)u+(kb). [Parke, Taylor]

▶ NLO predictions for W + 5j .
W

q

g

g

g
g
q′

e

ν

g

g

g

eW

ν
q′

q

Q̄1 Q̄1

g
Q2

Q̄2

eW

ν
q′

q

Q̄1 Q̄1

g

▶ Two-loop amplitudes for W + 2j production.

g

g

q

q̄

ℓ

ℓ̄V
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Part 1 Summary

▶ Factorization connects protonic to partonic scattering.

dσ =
∑

i ,j

∫

dxidxj fi (xi )fj(xj)dσi ,j(xi , xj) +O

(
ΛQCD

Q

)

.

▶ Beyond LO, infra-red divergences cancel between real/virtual.

δσNLO = δσ
(0)
n+1

︸ ︷︷ ︸

real

+ δσ
(1)
n

︸ ︷︷ ︸

virtual

,

▶ Two major ingredients required for fixed order predictions:
▶ Scattering amplitudes: Covered in this lecture.
▶ Real/virtual cancellations: See Marius’ lectures.
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Tree-Level
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Tree-Level One-Loop Two-Loop Outlook

Complexity of Feynman Diagram Approach

▶ Consider multi-parton
scattering at tree level.

▶ Huge number of diagrams
for high multiplicity.

▶ Diagram expressions large.
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Process n = 7 n = 8

g g → n g 559,405 10,525,900

qq̄ → n g 231,280 4,016,775

Major tools: “Quantum number management”, recursion relations.
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Colour in Scattering
▶ Useful to break down amplitude into colour and kinematics.

A =
∑

i

CiAi .

▶ Many all multiplicity colour statements understood, e.g.

A
(0)
n-gluon =

∑

σ∈Sn/Zn

tr (T aσ1T aσ2 · · ·T aσn )A
(0)
n-gluon (σ1, σ2, · · ·σn) .

▶ Individual Ai are easier to compute as fewer diagrams.

L
o
g
(#
d
ia
g
ra
m
s
)

3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

multiplicity

An-gluon

An-gluon
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Helicity Amplitudes
▶ To calculate a scattering amplitude, must specify the state.

ϵµs (p) us(p) vs(p) s = 1, 2.

▶ Distinguished set of states with well defined helicity:

ϵµs (p)→ ϵ
µ
±(p)

us(p)→ u±(p)

vs(p)→ u±(p).

▶ Amplitudes with helicity states have compact form!

A(1−g , 2
−
g , 3

+
g , . . . , n

+
g ) =

⟨12⟩4

⟨12⟩⟨23⟩ · · · ⟨(n − 1)n⟩⟨n1⟩
.
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On-Shell Recursion

▶ In “on-shell” limits amplitudes factorize:
p1

p2

p3 p4

p5

p6

=
1

s123

∑

s

p1

p2

p3 p4

p5

p6

+O(s0123)
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On-Shell Recursion

▶ In “on-shell” limits amplitudes factorize:
p1

p2

p3 p4

p5

p6

=
1

s123

∑

s

p1

p2

p3 p4

p5

p6

+O(s0123)

▶ Can be used to construct a recursion relation for amplitudes:

A(1, . . . , n) =
∑

k

∑

h

AL(1̃, . . . ,−P̃
h
k )AR(P̃

h
k , . . . , n)

P̃2
k

.

[Britto, Cachazo, Feng, Witten]
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On-Shell Recursion

▶ In “on-shell” limits amplitudes factorize:
p1

p2

p3 p4

p5

p6

=
1

s123

∑

s

p1

p2

p3 p4

p5

p6

+O(s0123)

▶ Can be used to construct a recursion relation for amplitudes:

A(1, . . . , n) =
∑

k

∑

h

AL(1̃, . . . ,−P̃
h
k )AR(P̃

h
k , . . . , n)

P̃2
k

.

[Britto, Cachazo, Feng, Witten]

▶ Very useful for building compact analytic results, e.g.

A1−g ,2−g ,3−g ,4+g ,5
+
g ,6

+
g
=

1

⟨5|3+4|2]

(
⟨1|2+3|4]3

[23][34]⟨56⟩⟨61⟩s234
+

⟨3|4+5|6]3

[61][12]⟨34⟩⟨45⟩s345

)
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Off-Shell Recursion (i): Organizing Feynman Diagrams

Consider the trivalent diagrams contributing to A
(tree)
5 .

Ben Page UGent

Fixed Order QCD: Part 2 7/30



Tree-Level One-Loop Two-Loop Outlook

Off-Shell Recursion (i): Organizing Feynman Diagrams

Consider the trivalent diagrams contributing to A
(tree)
5 .

1

23

4

+

2

3

4

1

+

1

2

3

4

+

2

34

1

+ 2 3

4

1
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Consider the trivalent diagrams contributing to A
(tree)
5 .
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+
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4

1

+

1

2

3

4

+

2
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1
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4
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Off-Shell Recursion (i): Organizing Feynman Diagrams

Consider the trivalent diagrams contributing to A
(tree)
5 .

1

23

4

+

2

3

4

1

+

1

2

3

4

+

2

34

1

+ 2 3

4

1

=

2

3

4

1

+

1

2

3

4

+

2

3

4

1

.
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Off-Shell Recursion (i): Organizing Feynman Diagrams

Consider the trivalent diagrams contributing to A
(tree)
5 .

1

23

4

+

2

3

4

1

+

1

2

3

4

+

2

34

1

+ 2 3

4

1

=

2

3

4

1

+

1

2

3

4

+

2

3

4

1

.

where

j

k

i

=

i

j

k

+

i

j

k

.
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Off-Shell Recursion (i): Organizing Feynman Diagrams

Consider the trivalent diagrams contributing to A
(tree)
5 .

1

23

4

+

2

3

4

1

+

1

2

3

4

+

2

34

1

+ 2 3

4

1

=

2

3

4

1

+

1

2

3

4

+

2

3

4

1

.

where

j

k

i

=

i

j

k

+

i

j

k

.

The diagram sum can be (recursively) organized into currents.
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Off-Shell Recursion (ii)
Let us consider gluons, introducing the off-shell current J µ
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Off-Shell Recursion (ii)
Let us consider gluons, introducing the off-shell current J µ:

A(1, . . . , n) = lim
p2n→0

ϵµnp
2
nJ

µn(1, . . . , n − 1),
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Off-Shell Recursion (ii)
Let us consider gluons, introducing the off-shell current J µ:

A(1, . . . , n) = lim
p2n→0

ϵµnp
2
nJ

µn(1, . . . , n − 1),

J µ satisfies the “Berends-Giele” recursion relation.

J µ(1, . . . , n) =

1

n

.

1

n

=
n−1∑

i=1

1

i

i + 1

n

+
n−2∑

i=1

m−1∑

j=i+1

1

i
i + 1

n

j

j + 1

.

Efficient numerical implementation for high multiplicity O(n4).
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One-Loop
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Loop Level Complexities
▶ Even larger diagrammatic combinatorics:

A
(1)
4g ∼
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▶ Moreover, each and every term is a Feynman integral.

D1

D2

D3

D4

D5

p1

p2

p3

p4

p5

=

∫

d
4ℓ

N(ℓ)

D1D2D3D4D5
.

▶ How do we compute the integrals?

▶ How do we manage these large expressions?

▶ Can we build automated tools?
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Dimensional Regularization
▶ Use “dim-reg” to tackle intermediate divergences.

d
4ℓi → d

Dℓi , where D = 4− 2ϵ.

▶ Divergences arise as poles in ϵ. E.g.

ℓ
p1 p2

∼
1

ϵ2
︸︷︷︸

soft/collienar

+
log(p1 · p2)

ϵ
︸ ︷︷ ︸

collinear

+O(ϵ0).

▶ Major blocker to use of Monte-Carlo integration.

▶ Take limit D → 4 at end of calculation.

σ(D) = σ(4) +O(ϵ).

Ben Page UGent
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Master Integral Decomposition
We write A(loop) in terms of a small set of master integrals:

A(loop)(p1, . . . , pn) =
∑

k

Ck(p1, . . . , pn)
︸ ︷︷ ︸

rational functions

Ik(pi · pj , p
2
i ,m

2
i )

︸ ︷︷ ︸

master integrals

.

Building blocks:

▶ Coefficients Ck : process dependent.

▶ Integrals Ik : process independent, depend only on kinematics.

Divide and conquer approach

▶ How do we efficiently compute the rational functions?

▶ How do we numerically evaluate the master integrals?

Ben Page UGent
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Integral Reduction

Many integrals. However, controlled by Lorentz invariance!

∫

d
Dℓ

ℓµℓν

ℓ2(ℓ− p)2
= Agµν + Bpµpν .
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Integral Reduction
Many integrals. However, controlled by Lorentz invariance!

∫

d
Dℓ

ℓµℓν

ℓ2(ℓ− p)2
= Agµν + Bpµpν .

Find A,B by contracting the equation with gµν and pµpν :

( ∫
d
Dℓ ℓ2

ℓ2(ℓ−p)2
∫
d
Dℓ

(ℓ·p)2

ℓ2(ℓ−p)2

)

=

(
D p2

p2 p4

)(
A

B

)
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Integral Reduction
Many integrals. However, controlled by Lorentz invariance!

∫

d
Dℓ

ℓµℓν

ℓ2(ℓ− p)2
= Agµν + Bpµpν .

Find A,B by contracting the equation with gµν and pµpν :

(

0
p4

4

∫
d
Dℓ 1

ℓ2(ℓ−p)2

)

=

(
D p2

p2 p4

)(
A

B

)
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Integral Reduction
Many integrals. However, controlled by Lorentz invariance!

∫

d
Dℓ

ℓµℓν

ℓ2(ℓ− p)2
= Agµν + Bpµpν .

Find A,B by contracting the equation with gµν and pµpν :

(

0
p4

4

∫
d
Dℓ 1

ℓ2(ℓ−p)2

)

=

(
D p2

p2 p4

)(
A

B

)

Gauge theory integrals same as scalar theory integrals!

←→
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Master Integral Decomposition at One Loop
▶ External momenta are 4D ⇒ high-point integrals reduce, e.g.:

=
5∑

i=1

ci
i

+O(ϵ).

▶ Altogether, we see that we can write a one-loop amplitude as:

A(1−loop) =
∑

i

c i
i
+
∑

j

c
j

j
+
∑

k

ck
k
+
∑

l

c l
l
+O(ϵ).

▶ Universal decomposition: valid for any process.

Efficient implementation of this decomposition was the missing
ingredient that allowed for the “NLO revolution” around 2010!
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Organizing by Unitarity
▶ Large number of terms. Break problem down by unitarity.

Discs12

[

A(1)
gggg

]

=

∫

dΦA(0)
gg→ggA

(0)
gg→gg =
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Organizing by Unitarity
▶ Large number of terms. Break problem down by unitarity.

Discs12

[

A(1)
gggg

]

=

∫

dΦA(0)
gg→ggA

(0)
gg→gg =

▶ Compare to discontinuity of MI decomposition:

Discs12

[

A(1)
gggg

]

= c1234 +c(12)34 +c12(34) +c(12)(34)
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Organizing by Unitarity
▶ Large number of terms. Break problem down by unitarity.

Discs12

[

A(1)
gggg

]

=

∫

dΦA(0)
gg→ggA

(0)
gg→gg =

▶ Compare to discontinuity of MI decomposition:

Discs12

[

A(1)
gggg

]

= c1234 +c(12)34 +c12(34) +c(12)(34)

▶ (Integrand) factorization allows more fine-grained split up:

= c1,2,3,4
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Organizing by Unitarity
▶ Large number of terms. Break problem down by unitarity.

Discs12

[

A(1)
gggg

]

=

∫

dΦA(0)
gg→ggA

(0)
gg→gg =

▶ Compare to discontinuity of MI decomposition:

Discs12

[

A(1)
gggg

]

= c1234 +c(12)34 +c12(34) +c(12)(34)

▶ (Integrand) factorization allows more fine-grained split up:

= c1,2,3,4

▶ Exploit tree-level advances. Reduction performed numerically!
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Automation!
▶ Automated unitarity-based strategy for integral reduction:

▶ NINJA, Samurai, CutTools.

▶ Many automatic tools for one-loop amplitude calculation∗:

▶ GoSAM
▶ HELAC-1Loop
▶ OpenLoops
▶ MadGraph5_AMC@NLO

▶ Blackhat
▶ Njet
▶ Recola
▶ NLOX

· · ·
∗ Many more developments: off-shell recursion for integrands, expansions

around singular configurations for stability, etc...

Numerical computations of high multiplicity (up to ∼ 2→ 6)
one-loop amplitudes are readily available!
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One Loop Master Integrals
▶ One loop integrals well understood. At worst dilogarithms:

1

2 3

4

=
1

ϵ
+ 2 + log(−s) +O(ϵ).

1

2 3

4

[s12s23] =
2

ϵ2

[
(−s12)

−ϵ+(−s12)
−ϵ−(−p24)

−ϵ
]
− log2

(
s12

s23

)

−
π2

3

− 2Li2

(

1−
p24
s12

)

− 2Li2

(

1−
p24
s23

)

+O(ϵ).

sij = (pi + pj)
2

▶ Essentially all integrals necessary for collider physics known.
▶ Scalar integrals compiled in many libraries: LoopTools,

Golem95C, OneLOop, QCDLoop 2.0, Collier.

See e.g. [https://arxiv.org/pdf/1912.06823] for summary.
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Two-Loop (and Beyond)
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New Difficulties at Two Loops
▶ Two-loop diagrams now ∼ 8-fold integral!

D1

D2

D3

D4

D5

D6

D7

D8

p1

p2

p3

p4

p5

=

∫

d
4ℓ1d

4ℓ2
N(ℓ1, ℓ2)

D1 · · ·D8
.

▶ Soft/collinear divergences are more severe. (Up to 1
ϵ4
).

▶ Lorentz invariance insufficient to reduce to masters.

▶ Master integrals unknown. Computation mathematically deep.

Calculations handled case by case, understanding is built as we go.
Throw every trick we have at it: reduction, unitarity, approximate...
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Leading Colour Approximation
▶ In the leading-colour approximation, amplitudes can simplify.

▶ Consider 5-gluon amplitude

A
(2)
5g =

︸ ︷︷ ︸

O(Nc
2)

+
︸ ︷︷ ︸

O(Nc
1)

+O(10000) diagrams.

▶ Often, complicated non-planar integrals are sub-leading in Nc .

▶ O(10%) effect on δσNNLO. Important to study!

δσNNLO = δσLC
NNLO +O

(
1

N2
c

)

.
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Master Integrals and Differential Equations

Aim: numerically evaluate ϵ expansion: Ik(p⃗, ϵ) =
∑

∞

n=−4 I
(n)
k ϵn

▶ Master integrals satisfy differential equations.

dIk = Mkl(ϵ, sij)Il .

▶ If integrals generalize logarithms can expose ϵ structure
[Gehrmann, Remiddi ’01; Henn ’13]

dIk = ϵ
︸︷︷︸

regulator

M̃kl(sij)
︸ ︷︷ ︸

differential forms

Il .

▶ ϵ-factorization facilitates expansion around 4d limit:

I
(n)
k =

∑

α,l

∫

M̃klI
(n−1)
l + constant.
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Numerically Solving the Differential Equation

Pentagon functions: [Gehrmann, Henn, lo Presti ’18]

▶ Dedicated iterated integral code:

I
(n)
k

∼

∫ 1

0
d log(Wn[tn]) · · ·

∫ t2

0
d log(W1[t1]).

▶ Very efficient for “high” multiplicity. 10−5

10−4

10−3

10−2

10−1

100

F
ra
ct
io
n
o
f
p
o
in
ts

−2 0 2 4 6 8 10 12 14 16

R (correct digits)

100

101

102

103

104

105

N
u
m
b
er

o
f
p
o
in
ts

PentagonFunctions++

Avg. time per point: 0.22s

[Chicherin, Sotnikov ’20]

Series expansions: popularized by [Moriello ’19]

▶ Patch together hk from power series:

I
(n)
k

∼
∑
j1,j2

(t − t0)
j1/2 log(t − t0)

j2 .

▶ Codes: DiffExp/SeaSyde/AMFlow.
[Hidding ’20] [Armadillo et al ’22] [Liu, Ma ’22]
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[Abreu, Ita, Moriello, BP, Tschernow, Zeng ’20]
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Tree-Level One-Loop Two-Loop Outlook

Integration By Parts
▶ Lorentz-invariance not enough to reduce to master integrals.

▶ Further relations from “fundamental theorem of calculus”:
∫ b

a

dxF ′(x) = F (b)− F (a).
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Integration By Parts
▶ Lorentz-invariance not enough to reduce to master integrals.

▶ Further relations from “fundamental theorem of calculus”:
∫ b

a

dxF ′(x) = F (b)− F (a).

▶ In multiple variables this is “Stokes theorem”:
∫

R

dω =

∫

∂R
ω.
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Tree-Level One-Loop Two-Loop Outlook

Integration By Parts
▶ Lorentz-invariance not enough to reduce to master integrals.

▶ Further relations from “fundamental theorem of calculus”:
∫ b

a

dxF ′(x) = F (b)− F (a).

▶ In multiple variables this is “Stokes theorem”:
∫

R

dω = 0.

Must take into account “integration-by-parts” relations:
For Feynman Integrals total derivatives integrate to zero.
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Tree-Level One-Loop Two-Loop Outlook

Reducing Two-Loop Amplitudes to Masters

▶ Reduction strategy for two-loops more pedestrian:

▶ Total derivatives induces many relations between integrals.

▶ Solve the linear system via Gauss elimination.

▶ Many public programs for IBP reduction: FIRE, FiniteFlow,
NeatIBP, LiteRed, Reduze, KIRA...

▶ NB: Analytic algorithm ⇒ all two-loop results are analytic.

Large bottleneck for high multiplicity: solving relations analytically.
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Rethinking Computer Algebra: Analytic Reconstruction

▶ Analytic coefficients built from numerical samples via Ansatz.

Ck(p1, . . . , pn) =

Nk∑

j=1

cjkajk(p1, . . . , pn), cjk ∈ Q.

▶ Numerical evaluations provide constraints on unknown cjk .

(p
(0)
1 , . . . , p

(0)
n ) −→ −→ C1(p

(0)
1 , . . . , p

(0)
n ).

▶ Made practical by finite field methods (working modulo p).
[Schabinger, von Manteuffel ’14; Peraro ’16]

▶ Sidesteps complex algebra – only intermediate numerics!
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Tree-Level One-Loop Two-Loop Outlook

State-of-the-Art Two-Loop Amplitudes
Five-Point NNLO QCD (no internal masses)

pp → 3j pp → γγ + j pp →W + 2j H + bb

g

g

q

q̄

ℓ

ℓ̄V

[Abreu et al], [Agarwal
et al], [De Laurentis et

al]

[Agarwal et al],
[Chawdhry et al],
[Badger et al]

[Abreu et al] [Badger

et al] (bb)
[Badger et al]

Four-Point QCD/EW @ NNLO (internal masses)

pp → γγ pp → γγ + j

a) b) c) d)
[Bonciani et al] [Armadillo et al]
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Outlook
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Tree-Level One-Loop Two-Loop Outlook

Elliptic Integrals
▶ At two-loops, functions go beyond logarithm generalizations.

▶ Example: two-loop sunrise integral, contains “elliptic” curve.

∼

∫ 1

0
dx

log(χ(x , y))

y
, y2 =

4∏

i=1

(x − ai )

︸ ︷︷ ︸

elliptic curve

.

▶ No general understanding of special functions.

▶ Arise frequently in cases with internal masses in the loop, e.g.

t

t

t
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Tree-Level One-Loop Two-Loop Outlook

New Frontiers
▶ 3-loop: pp → V + j [leading color], dijet, diphoton.

[Caola et al ’21; Gehrmann et al ’23]

▶ Some integrals for 4-jet production at NNLO.

[Henn et al ’24]
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Tree-Level One-Loop Two-Loop Outlook

Summary

▶ Amplitudes are a key bottleneck in making predictions.

▶ Modern understanding of perturbation theory has reached far.

▶ Tree-level/one-loop well understood (numerical algorithms).

▶ Frontiers:

▶ Two-loop: new theoretical challenges. Results almost always
analytic. Active area of research.

▶ ≥ Three-loop in infancy. (No Nˆ3LO 2→ 2 yet).
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