Fixed Order QCD Calculations

or The Magic of Perturbation Theory at Colliders

Ben Page

University of Ghent

BND Graduate School $2^{nd} - 12^{th}$ September 2024

Ben Page Fixed Order QCD: Part 1 UGent

Lecture Content

- 1. Introduction to Predictions at Colliders
 - Fundamentals: Fields/Interactions, Partons/Asymptotic Freedom
 - Cross-section breakdown: Collinear Factorization + PDFs, Perturbative Expansion, Real-Virtual Decomposition.
- 2. Modern Techniques for Feynman Diagrams
 - Tree-level: Helicity/Color, Recursive Methods
 - One-loop: Regularization, Master Integral Reduction, Unitarity
 - Two-loop (and beyond): Frontiers and difficulties.

Introduction

Ben Page Fixed Order QCD: Part 1 UGent

A Collision at the LHC

Precise Perturbative Predictions

► To understand collider data, we need precise SM predictions.

Perturbation theory is our major tool for making predictions.

$$\sigma[\alpha_{5}] \sim \sigma_{\text{LO}} + \alpha_{5} \delta \sigma_{\text{NLO}} + \alpha_{5}^{2} \delta \sigma_{\text{NNLO}} + \mathcal{O}(\alpha_{5}^{3}).$$

► As a LHC is a proton machine, we will focus on QCD.

Introduction

A Physical Picture for pp Scattering

- Proton-proton collision. Initial state: non-perturbative QCD.
- High energy (fundamental) interactions occur in the centre.
- Produced particles emit QCD radiation and hadronize.

How can we build a quantitative description of the collision, making use of perturbation theory?

QCD Fundamentals

Ben Page Fixed Order QCD: Part 1 UGent

Quantum Chromodynamics: A Field Theory

▶ 8 gluon fields $A^1_{\mu}, \ldots A^8_{\mu}$, $3N_f$ quark fields $\psi^f_1, \ldots, \psi^f_3$.

Interactions neatly described by Lagrangian:

$$\mathcal{L}_{\text{QCD}} = \underbrace{\overline{\psi^{f}}_{i}(i\partial \!\!\!/ - m_{f})\psi^{f}_{i}}_{\mathcal{L}_{\text{Dirac}}} - \underbrace{\frac{1}{4}F^{a}_{\mu\nu}F^{\mu\nu}_{a}}_{\mathcal{L}_{\text{YM}}} - \underbrace{g_{s}\overline{\psi^{f}_{i}}A^{a}T^{a}_{ij}\psi^{f}_{j}}_{\mathcal{L}_{q/g-\text{int}}}.$$
where
$$F^{a}_{\mu\nu} = \partial_{\mu}A^{a}_{\nu} - \partial_{\nu}A^{a}_{\mu} + g_{s}f_{abc}A^{b}_{\mu}A^{c}_{\nu},$$

$$f_{abc}, \ T^{a}_{ij} = SU(N_{c}) \text{ group theory factors.}$$

QCD: "The $SU(N_c)$ gauge theory of quark/gluon interactions". $N_c = 3$ "colours", $N_f = 6$ flavours of quark.

Building Blocks of Perturbative QCD

Field propagators

$$i _ j = i\delta_{ij} \frac{1}{\not p - m}$$
 $a, \mu \mod b, \nu = -i\delta_{ab} \frac{g^{\mu\nu}}{p^2}$

Ben Page Fixed Order QCD: <u>Part 1</u>

Asymptotic States in QCD

Asymptotic states in perturbation theory are from free theory:

$$\psi_i lacksquare$$
 \longleftrightarrow $u(p)$ $A^a_\mu lacksquare$ \leftrightarrow $arepsilon_\mu(p)$

For QCD the free fields are the quarks and gluons.

But! Asymptotic states of the interacting theory are hadrons.

First question when using perturbative QCD: fundamental degrees of freedom do not appear as asymptotic states!

The QCD Coupling and Asymptotic Freedom

Coupling constants in QFT run! Captured by "β-function":

$$\beta = \mu^2 \frac{\partial}{\partial \mu^2} \alpha_{\mathcal{S}}(\mu^2) = \frac{\alpha_{\mathcal{S}}^2}{2\pi} \left(b_0 + \left[\frac{\alpha_{\mathcal{S}}}{2\pi} \right] b_1 + \cdots \right), \qquad \alpha_{\mathcal{S}} = \frac{g_{\mathcal{S}}^2}{4\pi}.$$

• At leading order (one-loop), introducing reference scale μ_0 :

$$\frac{1}{\alpha_{\mathcal{S}}(\mu)} = \frac{1}{\alpha_{\mathcal{S}}(\mu_0)} + \frac{b_0}{2\pi} \log(\mu^2/\mu_0^2)$$

▶ In QCD $b_0 > 0$, so $\lim_{\mu \to \infty} \alpha_S(\mu) = 0$.

$$b_0 = rac{11}{3}N_c - rac{2}{3}N_f.$$

• $\alpha_S(M_z) \sim 0.12 \Rightarrow pQCD$ applicable at hadron colliders!

Collinear Factorization

At high energy, proton-proton scattering "factorizes" into scattering of underlying partons (quarks + gluons).

$$\xrightarrow{i}_{f_i} f_j \longrightarrow d\sigma = \sum_{i,j} \int dx_i dx_j f_i(x_i) f_j(x_j) d\sigma_{i,j}(x_i, x_j).$$

• $d\sigma_{pp}$ built from $d\sigma_{i,j}$ and "parton distribution functions".

• This is an approximation. Valid up to $O(\Lambda_{\rm QCD}/Q)$.

Must include parton shower/hadronization. [Marius' lectures]

Parton Distribution Functions

 $f_i(x, Q^2)$: "probability of finding parton i with momentum fraction x when probing proton (P) at scale $Q^{2"}$.

- Not perturbatively calculable! Determined from data.
- ▶ PDFs satisfy (perturbatively calculable) evolution equations.

$$Q^{2} \frac{\partial}{\partial Q^{2}} f_{i}(x, Q^{2}) = \sum_{j} \frac{\alpha_{\mathcal{S}}(Q^{2})}{2\pi} \int_{x}^{1} \mathrm{d}z \underbrace{P_{ij}(z)}_{\substack{\mathsf{splitting} \\ \mathsf{functions}}} f_{j}(x/z, Q^{2}).$$

[Dokshitzer, Gribov, Lipatov, Altarelli, Parisi]

Ben Page

Building Blocks of Perturbative Predictions

$$\sigma = \frac{1}{2s} \int \mathrm{d}\Phi_n |\mathcal{A}(p_1, p_2, k_1, \dots, k_n)|^2$$
$$\mathrm{d}\Phi_n = \prod_i \frac{\mathrm{d}^3 k_i}{(2\pi)^3 E_i} (2\pi)^4 \delta^{(4)} \left(p_1 + p_2 - \sum_i k_i \right)$$

Ben F	'age			
Fixed	Order	QCD:	Part	1

• $d\Phi_n$ integration: observable-dependent, Monte-Carlo.

• $d\Phi_n$ integration: observable-dependent, Monte-Carlo.

A: Feynman diagram sum, contains fundamental interactions.

• $d\Phi_n$ integration: observable-dependent, Monte-Carlo.

A: Feynman diagram sum, contains fundamental interactions.

► NB: Squaring amplitude mixes contributions at higher orders $|\mathcal{A}^{(0)}+g_s^2\mathcal{A}^{(1)}+\cdots|^2 = |\mathcal{A}^{(0)}|^2+g_s^2\left[\mathcal{A}^{*(0)}\mathcal{A}^{(1)}+\mathcal{A}^{*(1)}\mathcal{A}^{(0)}\right]+\mathcal{O}(g_s^8).$

• $d\Phi_n$ integration: observable-dependent, Monte-Carlo.

A: Feynman diagram sum, contains fundamental interactions.

▶ NB: Squaring amplitude mixes contributions at higher orders $|\mathcal{A}^{(0)} + g_s^2 \mathcal{A}^{(1)} + \cdots |^2 = |\mathcal{A}^{(0)}|^2 + 2g_s^2 \operatorname{Re} \left[\mathcal{A}^{*(0)} \mathcal{A}^{(1)} \right] + \mathcal{O}(g_s^8).$

Ben F	'age			
Fixed	Order	QCD:	Part	1

• Let us consider the Drell-Yan process at leading order.

Average over states/color for unpolarized cross-section:

$$\frac{1}{4} \frac{1}{9} \sum_{s_k,i,j} |\mathcal{A}^2| = \frac{e_q^2 e_l^2 g^4}{12 s_{12}^2} \mathrm{tr} \left[(p_2' - m_q) \gamma^{\mu} (p_1' + m_q) \gamma^{\nu} \right] \mathrm{tr} \left[(p_4' + m_l) \gamma^{\mu} (p_3' - m_q) \gamma^{\nu} \right].$$

• Let us consider the Drell-Yan process at leading order.

$$\begin{split} i\mathcal{A}(\mathbf{1}_{s_{1}}^{q},\mathbf{2}_{s_{2}}^{\overline{q}},\mathbf{3}_{s_{3}}^{l},\mathbf{4}_{s_{4}}^{\overline{l}}) &= \underbrace{\gamma^{*}}_{\overline{q}(p_{2})} \underbrace{l(p_{4})}_{\overline{q}(p_{2})} \underbrace{l(p_{4})}_{\overline{l}(p_{3})} \\ &= \overline{v}_{s_{2}}(p_{2})(-ie_{q}g)\gamma^{\mu}\delta_{ij}u_{s_{1}}(p_{1})\overline{u}_{s_{4}}(p_{4})\frac{-ig_{\mu\nu}}{s_{12}}(-ie_{l}g)\gamma^{\nu}v_{s_{3}}(p_{3}). \end{split}$$

Average over states/color for unpolarized cross-section:

$$\frac{1}{4} \frac{1}{9} \sum_{\mathbf{s}_k, i, j} |\mathcal{A}^2| = \frac{24e_q^2 e_l^2 g^4}{s_{12}^2} \left[(p_1 \cdot p_4)(p_2 \cdot p_3) + (p_1 \cdot p_3)(p_2 \cdot p_4) + m_q^2(p_3 \cdot p_4) + \cdots \right].$$

Amplitude (and square) just rational functions of kinematics.

Amplitudes Beyond Leading Order

Loop-corrections to scattering amplitude are integrals!

Ben F	age			
Fixed	Order	QCD:	Part	1

Amplitudes Beyond Leading Order

Loop-corrections to scattering amplitude are integrals!

► High-energy contribution unbounded! ⇒ renormalization.

$$E_{\ell} \sim \infty, \qquad \alpha_0 \to \alpha_R(Q^2).$$

Amplitudes Beyond Leading Order

Loop-corrections to scattering amplitude are integrals!

► High-energy contribution unbounded! ⇒ renormalization.

$$E_{\ell} \sim \infty, \qquad \alpha_0 \to \alpha_R(Q^2).$$

Massless particles: unbounded contribution from infra-red.

Ben Page	UGent
Fixed Order QCD: Part 1	18/23

Cross-Sections at Next-to-Leading Order

Kinoshita-Lee-Nauenberg Theorem (KLN)

Must include contributions from physically indistinguishable σ .

$$\delta\sigma_{\mathsf{NLO}} = \underbrace{2\int \mathrm{d}\Phi_{n}\mathrm{Re}\left[\mathcal{A}_{n}^{*\mathsf{tree}}\mathcal{A}_{n}^{1\mathsf{-loop}}\right]}_{\mathsf{virtual}} + \underbrace{\int \mathrm{d}\Phi_{n+1}|\mathcal{A}_{n+1}^{\mathsf{tree}}|^{2}}_{\mathsf{real}}$$

Ben F	age			
Fixed	Order	QCD:	Part	1

Cross-Sections at Next-to-Leading Order

Kinoshita-Lee-Nauenberg Theorem (KLN)

Must include contributions from physically indistinguishable σ .

$$\delta\sigma_{\mathsf{NLO}} = \underbrace{2\int \mathrm{d}\Phi_{n}\mathrm{Re}\left[\mathcal{A}_{n}^{*\mathsf{tree}}\mathcal{A}_{n}^{1\mathsf{-loop}}\right]}_{\mathsf{virtual}} + \underbrace{\int \mathrm{d}\Phi_{n+1}|\mathcal{A}_{n+1}^{\mathsf{tree}}|^{2}}_{\mathsf{real}}$$

▶ Real contribution from singular emission. E.g. $e^+e^- \rightarrow q\overline{q}+g$:

• Indistinguishable to $e^+e^-
ightarrow q\overline{q}$ if g is soft or collinear to q/\overline{q} .

Practical Infra-Red Divergences

Divergences cancel between loop and phase-space integrals.

$$\underbrace{\delta\sigma_{\mathsf{NLO}}}_{\mathsf{finite}} = \underbrace{\int \mathrm{d}\Phi_{n+1} |\mathcal{A}_{n+1}^{(0)}|^2}_{\mathsf{divergent}} + 2 \int \mathrm{d}\Phi_n \underbrace{\operatorname{Re}\left[\mathcal{A}_n^{*(0)}\mathcal{A}_n^{(1)}\right]}_{\mathsf{divergent}}.$$

Difficulty: how to perform Monte-Carlo numerically?

Ben F	'age			
Fixed	Order	QCD:	Part	1

Practical Infra-Red Divergences

Divergences cancel between loop and phase-space integrals.

$$\underbrace{\delta\sigma_{\mathsf{NLO}}}_{\mathsf{finite}} = \underbrace{\int \mathrm{d}\Phi_{n+1} |\mathcal{A}_{n+1}^{(0)}|^2}_{\mathsf{divergent}} + 2 \int \mathrm{d}\Phi_n \underbrace{\operatorname{Re}\left[\mathcal{A}_n^{*(0)}\mathcal{A}_n^{(1)}\right]}_{\mathsf{divergent}}.$$

- Difficulty: how to perform Monte-Carlo numerically?
- Reorganize calculation: cancel divergences before integration.

$$\delta\sigma_{\mathsf{NLO}} = \underbrace{\int \mathrm{d}\Phi_{n+1}\left[|\mathcal{A}_{n+1}^{(0)}|^2 - S\right]}_{\text{finite}} + \int \mathrm{d}\Phi_n \underbrace{\left[2\mathrm{Re}\left(\mathcal{A}_n^{*(0)}\mathcal{A}_n^{(1)}\right) + \int \mathrm{d}\Phi_1 S\right]}_{\text{finite}}$$

Industry of subtraction/slicing methods. [Marius' Lectures]

Which Amplitudes for the LHC?

- $\alpha_{S}(\mu)$ grows as μ falls \Rightarrow multi-jet processes prevelant.
- $\alpha_S(M_z) \sim 0.1$. Rule of thumb:
 - LO gives qualitative picture.
 - NLO gives quantitative picture.
 - NNLO reasonable error bars.

Many processes have tree-level at leading order

$$A_{5g} = \left[\begin{array}{c} \\ \\ \end{array} \right] + \alpha_{5} \left[\begin{array}{c} \\ \\ \end{array} \right] + \alpha_{5} \left[\begin{array}{c} \\ \\ \end{array} \right] + \alpha_{5}^{2} \left[\begin{array}{c} \\ \\ \end{array} \right] + \alpha_{5}^{2} \left[\begin{array}{c} \\ \\ \end{array} \right] + \mathcal{O}(\alpha_{5}^{3}).$$

NB: Loop induced processes have loop at leading order!

$$A_{gg \to H} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \alpha_{S} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \alpha_{S} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \alpha_{S} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \mathcal{O}(\alpha_{s}^{2}).$$

Feats of Perturbation Theory

► All multiplicity *n*-gluon amplitude known analytically:

$$\mathcal{A}(1_g^-, 2_g^-, 3_g^+, \ldots, n_g^+) = \frac{\langle 12 \rangle^4}{\langle 12 \rangle \langle 23 \rangle \cdots \langle (n-1)n \rangle \langle n1 \rangle},$$

where $\langle ab \rangle = \overline{u}_{-}(k_{a})u_{+}(k_{b})$. [Parke, Taylor]

▶ NLO predictions for W + 5j.

• Two-loop amplitudes for W + 2j production.

Part 1 Summary

Factorization connects protonic to partonic scattering.

$$\mathrm{d}\sigma = \sum_{i,j} \int \mathrm{d}x_i \mathrm{d}x_j f_i(x_i) f_j(x_j) \mathrm{d}\sigma_{i,j}(x_i, x_j) + \mathcal{O}\left(\frac{\Lambda_{\mathsf{QCD}}}{Q}\right).$$

Beyond LO, infra-red divergences cancel between real/virtual.

$$\delta\sigma_{\mathsf{NLO}} = \underbrace{\delta\sigma_{n+1}^{(0)}}_{\mathsf{real}} + \underbrace{\delta\sigma_{n}^{(1)}}_{\mathsf{virtual}},$$

Two major ingredients required for fixed order predictions:

- Scattering amplitudes: Covered in this lecture.
- Real/virtual cancellations: See Marius' lectures.
Fixed Order QCD Calculations Part 2: Adventures in Perturbation Theory

Ben Page

University of Ghent

BND Graduate School $2^{nd} - 12^{th}$ September 2024

Tree-Level

Ben Page Fixed Order QCD: Part 2 UGent

Complexity of Feynman Diagram Approach

- Consider multi-parton scattering at tree level.
- Huge number of diagrams for high multiplicity.
- Diagram expressions large.

Process	<i>n</i> = 7	<i>n</i> = 8
g g ightarrow n g	559,405	10,525,900
$qar{q} o n \: g$	231,280	4,016,775

Major tools: "Quantum number management", recursion relations.

Colour in Scattering

Useful to break down amplitude into colour and kinematics.

$$A=\sum_{i}C_{i}\mathcal{A}_{i}.$$

Many all multiplicity colour statements understood, e.g.

$$\mathcal{A}_{n-\text{gluon}}^{(0)} = \sum_{\sigma \in S_n/\mathcal{Z}_n} \operatorname{tr} \left(T^{a_{\sigma_1}} T^{a_{\sigma_2}} \cdots T^{a_{\sigma_n}} \right) \mathcal{A}_{n-\text{gluon}}^{(0)} \left(\sigma_1, \sigma_2, \cdots \sigma_n \right).$$

lndividual A_i are easier to compute as fewer diagrams.

Ben Page Fixed Order QCD: Part 2

Helicity Amplitudes

To calculate a scattering amplitude, must specify the state.

$$\epsilon_s^\mu(p) \qquad u_s(p) \qquad v_s(p) \qquad s=1,2.$$

Distinguished set of states with well defined helicity:

$$egin{aligned} \epsilon^\mu_{s}(p) &
ightarrow \epsilon^\mu_{\pm}(p) \ u_{s}(p) &
ightarrow u_{\pm}(p) \ v_{s}(p) &
ightarrow u_{\pm}(p). \end{aligned}$$

Amplitudes with helicity states have compact form!

$$\mathcal{A}(1_g^-, 2_g^-, 3_g^+, \dots, n_g^+) = rac{\langle 12 \rangle^4}{\langle 12 \rangle \langle 23 \rangle \cdots \langle (n-1)n \rangle \langle n1 \rangle}.$$

On-Shell Recursion

In "on-shell" limits amplitudes factorize:

On-Shell Recursion

► In "on-shell" limits amplitudes factorize:

Can be used to construct a recursion relation for amplitudes:

$$\mathcal{A}(1,\ldots,n) = \sum_{k} \sum_{h} \frac{\mathcal{A}_{L}(\tilde{1},\ldots,-\tilde{P}_{k}^{\overline{h}})\mathcal{A}_{R}(\tilde{P}_{k}^{h},\ldots,n)}{\tilde{P}_{k}^{2}}.$$
[Britto Cachazo Feng W

[Britto, Cachazo, Feng, Witten]

On-Shell Recursion

► In "on-shell" limits amplitudes factorize:

Can be used to construct a recursion relation for amplitudes:

$$\mathcal{A}(1,\ldots,n) = \sum_{k} \sum_{h} \frac{\mathcal{A}_{L}(\tilde{1},\ldots,-\tilde{P}_{k}^{\overline{h}})\mathcal{A}_{R}(\tilde{P}_{k}^{h},\ldots,n)}{\tilde{P}_{k}^{2}}.$$

[Britto, Cachazo, Feng, Witten]

Very useful for building compact analytic results, e.g.

$$\mathcal{A}_{1_{g}^{-},2_{g}^{-},3_{g}^{-},4_{g}^{+},5_{g}^{+},6_{g}^{+}} = \frac{1}{\langle 5|3+4|2]} \left(\frac{\langle 1|2+3|4]^{3}}{[23][34]\langle 56\rangle\langle 61\rangle s_{234}} + \frac{\langle 3|4+5|6]^{3}}{[61][12]\langle 34\rangle\langle 45\rangle s_{345}} \right)$$

Consider the trivalent diagrams contributing to $\mathcal{A}_5^{(\text{tree})}$.

The diagram sum can be (recursively) organized into currents.

Off-Shell Recursion (ii)

Let us consider gluons, introducing the off-shell current \mathcal{J}^{μ}

Off-Shell Recursion (ii)

Let us consider gluons, introducing the off-shell current \mathcal{J}^{μ} :

$$\mathcal{A}(1,\ldots,n) = \lim_{p_n^2 \to 0} \epsilon_{\mu_n} p_n^2 \mathcal{J}^{\mu_n}(1,\ldots,n-1),$$

Off-Shell Recursion (ii)

Let us consider gluons, introducing the off-shell current \mathcal{J}^{μ} :

$$\mathcal{A}(1,\ldots,n)=\lim_{p_n^2\to 0}\epsilon_{\mu_n}p_n^2\mathcal{J}^{\mu_n}(1,\ldots,n-1),$$

 \mathcal{J}^{μ} satisfies the "Berends-Giele" recursion relation.

Efficient numerical implementation for high multiplicity $O(n^4)$.

One-Loop

Ben Page Fixed Order QCD: Part 2 UGent

Loop Level Complexities

Even larger diagrammatic combinatorics:

Moreover, each and every term is a Feynman integral.

$$\int_{D_1}^{D_2} d^{D_2} d^{D_3} = \int d^4 \ell \frac{N(\ell)}{D_1 D_2 D_3 D_4 D_5}$$

- How do we compute the integrals?
- How do we manage these large expressions?
- Can we build automated tools?

Ben Page Fixed Order QCD: Part 2

Dimensional Regularization

Use "dim-reg" to tackle intermediate divergences.

$$d^4\ell_i \rightarrow d^D\ell_i$$
, where $D = 4 - 2\epsilon$.

• Divergences arise as poles in ϵ . E.g.

Major blocker to use of Monte-Carlo integration.

• Take limit $D \rightarrow 4$ at end of calculation.

$$\sigma(D) = \sigma(4) + \mathcal{O}(\epsilon).$$

Master Integral Decomposition

We write $A^{(loop)}$ in terms of a small set of master integrals:

$$A^{(\text{loop})}(p_1,\ldots,p_n) = \sum_k \underbrace{\mathcal{C}_k(p_1,\ldots,p_n)}_{\text{rational functions}} \underbrace{\mathcal{I}_k(p_i \cdot p_j,p_i^2,m_i^2)}_{\text{master integrals}}.$$

Building blocks:

- Coefficients C_k: process dependent.
- ▶ Integrals \mathcal{I}_k : process independent, depend only on kinematics.

Divide and conquer approach

- How do we efficiently compute the rational functions?
- How do we numerically evaluate the master integrals?

Many integrals. However, controlled by Lorentz invariance!

$$\int \mathrm{d}^D \ell \frac{\ell^\mu \ell^\nu}{\ell^2 (\ell-p)^2} = A g^{\mu\nu} + B p^\mu p^\nu.$$

Many integrals. However, controlled by Lorentz invariance!

$$\int \mathrm{d}^D \ell \frac{\ell^\mu \ell^\nu}{\ell^2 (\ell-p)^2} = A g^{\mu\nu} + B p^\mu p^\nu.$$

Find A, B by contracting the equation with $g^{\mu\nu}$ and $p^{\mu}p^{\nu}$:

$$\begin{pmatrix} \int \mathrm{d}^D \ell \frac{\ell^2}{\ell^2 (\ell - p)^2} \\ \int \mathrm{d}^D \ell \frac{(\ell \cdot p)^2}{\ell^2 (\ell - p)^2} \end{pmatrix} = \begin{pmatrix} D & p^2 \\ p^2 & p^4 \end{pmatrix} \begin{pmatrix} A \\ B \end{pmatrix}$$

Many integrals. However, controlled by Lorentz invariance!

$$\int \mathrm{d}^D \ell \frac{\ell^\mu \ell^\nu}{\ell^2 (\ell-p)^2} = A g^{\mu\nu} + B p^\mu p^\nu.$$

Find A, B by contracting the equation with $g^{\mu\nu}$ and $p^{\mu}p^{\nu}$:

$$\left(\begin{array}{c}0\\\frac{p^4}{4}\int\mathrm{d}^D\ell\frac{1}{\ell^2(\ell-p)^2}\end{array}\right) = \left(\begin{array}{c}D&p^2\\p^2&p^4\end{array}\right)\left(\begin{array}{c}A\\B\end{array}\right)$$

Many integrals. However, controlled by Lorentz invariance!

$$\int \mathrm{d}^D \ell \frac{\ell^\mu \ell^\nu}{\ell^2 (\ell-p)^2} = A g^{\mu\nu} + B p^\mu p^\nu.$$

Find A, B by contracting the equation with $g^{\mu\nu}$ and $p^{\mu}p^{\nu}$:

$$\left(\begin{array}{c}0\\\frac{p^4}{4}\int\mathrm{d}^D\ell\frac{1}{\ell^2(\ell-p)^2}\end{array}\right) = \left(\begin{array}{c}D&p^2\\p^2&p^4\end{array}\right)\left(\begin{array}{c}A\\B\end{array}\right)$$

Gauge theory integrals same as scalar theory integrals!

Master Integral Decomposition at One Loop

• External momenta are $4D \Rightarrow$ high-point integrals reduce, e.g.:

$$\checkmark = \sum_{i=1}^{5} c_i \checkmark (\epsilon).$$

Altogether, we see that we can write a one-loop amplitude as:

$$\mathcal{A}^{(1-\text{loop})} = \sum_{i} c^{i}_{\mathcal{H}} \prod_{j} + \sum_{j} c^{j}_{\mathcal{H}} \bigwedge_{j} + \sum_{k} c^{k}_{\mathcal{H}} \bigwedge_{j} \bigwedge_{k} + \sum_{l} c^{l}_{\mathcal{H}} \bigwedge_{j} + \mathcal{O}(\epsilon).$$

Universal decomposition: valid for any process.

Efficient implementation of this decomposition was the missing ingredient that allowed for the "NLO revolution" around 2010!

Organizing by Unitarity

Large number of terms. Break problem down by unitarity.

$$\operatorname{Disc}_{\mathfrak{s}_{12}}\left[\mathcal{A}_{gggg}^{(1)}\right] = \int \mathrm{d}\Phi \mathcal{A}_{gg \to gg}^{(0)} \mathcal{A}_{gg \to gg}^{(0)} = \underbrace{\operatorname{d}\Phi}_{\mathfrak{s}_{gg \to gg}} \mathcal{A}_{gg \to gg}^{(0)} = \underbrace{\operatorname{d}\Phi}_{\mathfrak{s}_{gg \to gg}^{(0)} = \underbrace{\operatorname{d}\Phi}_{gg \to gg}^{(0)} = \underbrace{\operatorname{d}\Phi}_{\mathfrak{s}_{gg \to gg}$$

÷

Organizing by Unitarity

Large number of terms. Break problem down by unitarity.

Compare to discontinuity of MI decomposition:

$$\operatorname{Disc}_{s_{12}}\left[\mathcal{A}_{gggg}^{(1)}\right] = c_{1234} + c_{(12)34} + c_{(12)34} + c_{(12)(34)} + c_$$

ŝ

Organizing by Unitarity

Large number of terms. Break problem down by unitarity.

Compare to discontinuity of MI decomposition:

$$\text{Disc}_{s_{12}}\left[\mathcal{A}_{gggg}^{(1)}\right] = c_{1234} + c_{(12)34} + c_{12(34)} + c_{(12)(34)} + c_$$

(Integrand) factorization allows more fine-grained split up:

$$c_{1,2,3,4} = c_{1,2,3,4}$$

8

Organizing by Unitarity

Large number of terms. Break problem down by unitarity.

Compare to discontinuity of MI decomposition:

$$\text{Disc}_{s_{12}}\left[\mathcal{A}_{gggg}^{(1)}\right] = c_{1234} + c_{(12)34} + c_{12(34)} + c_{(12)(34)} + c_$$

(Integrand) factorization allows more fine-grained split up:

$$c_{1,2,3,4} = c_{1,2,3,4}$$

Exploit tree-level advances. Reduction performed numerically!

Ben Page Fixed Order QCD: Part 2

Automation!

- Automated unitarity-based strategy for integral reduction:
 - NINJA, Samurai, CutTools.
- Many automatic tools for one-loop amplitude calculation*:

* Many more developments: off-shell recursion for integrands, expansions around singular configurations for stability, etc...

Numerical computations of high multiplicity (up to $\sim 2 \rightarrow 6)$ one-loop amplitudes are readily available!

-1

One Loop Master Integrals

4

One loop integrals well understood. At worst dilogarithms:

$$\frac{1}{2} \mathbf{X} \mathbf{A}_{3}^{4} = \frac{1}{\epsilon} + 2 + \log(-s) + \mathcal{O}(\epsilon).$$

$$\sum_{2}^{1} \sum_{j=1}^{4} [s_{12}s_{23}] = \frac{2}{\epsilon^{2}} \left[(-s_{12})^{-\epsilon} + (-s_{12})^{-\epsilon} - (-p_{4}^{2})^{-\epsilon} \right] - \log^{2} \left(\frac{s_{12}}{s_{23}} \right) - \frac{\pi^{2}}{3}$$
$$- 2 \operatorname{Li}_{2} \left(1 - \frac{p_{4}^{2}}{s_{12}} \right) - 2 \operatorname{Li}_{2} \left(1 - \frac{p_{4}^{2}}{s_{23}} \right) + \mathcal{O}(\epsilon).$$
$$s_{ij} = (p_{i} + p_{j})^{2}$$

- Essentially all integrals necessary for collider physics known.
- Scalar integrals compiled in many libraries: LoopTools, Golem95C, OneLOop, QCDLoop 2.0, Collier.

See e.g. [https://arxiv.org/pdf/1912.06823] for summary.

Two-Loop (and Beyond)

Ben Page Fixed Order QCD: Part 2 UGent 18/30

New Difficulties at Two Loops

Two-loop diagrams now ~ 8-fold integral!

- Soft/collinear divergences are more severe. (Up to $\frac{1}{\epsilon^4}$).
- Lorentz invariance insufficient to reduce to masters.
- Master integrals unknown. Computation mathematically deep.

Calculations handled case by case, understanding is built as we go. Throw every trick we have at it: reduction, unitarity, approximate...

Leading Colour Approximation

- ▶ In the leading-colour approximation, amplitudes can simplify.
- Consider 5-gluon amplitude

- Often, complicated non-planar integrals are sub-leading in N_c .
- $\mathcal{O}(10\%)$ effect on $\delta\sigma_{NNLO}$. Important to study!

$$\delta \sigma_{\rm NNLO} = \delta \sigma_{\rm NNLO}^{\rm LC} + \mathcal{O}\left(\frac{1}{N_c^2}\right).$$

Master Integrals and Differential Equations

Aim: numerically evaluate ϵ expansion: $\mathcal{I}_k(\vec{p}, \epsilon) = \sum_{n=-4}^{\infty} \mathcal{I}_k^{(n)} \epsilon^n$

Master integrals satisfy differential equations.

$$\mathrm{d}\mathcal{I}_k = \mathbf{M}_{kl}(\epsilon, s_{ij})\mathcal{I}_l.$$

• If integrals generalize logarithms can expose ϵ structure

[Gehrmann, Remiddi '01; Henn '13]

ϵ-factorization facilitates expansion around 4d limit:

$$\mathcal{I}_k^{(n)} = \sum_{lpha, l} \int \tilde{\mathbf{M}}_{kl} \mathcal{I}_l^{(n-1)} + ext{constant.}$$
Numerically Solving the Differential Equation

Pentagon functions: [Gehrmann, Henn, lo Presti '18]

- ► Dedicated iterated integral code: $\mathcal{I}_{k}^{(n)} \sim \int_{0}^{1} \mathrm{d} \log(W_{n}[t_{n}]) \cdots \int_{0}^{t_{2}} \mathrm{d} \log(W_{1}[t_{1}]).$
- Very efficient for "high" multiplicity.

Series expansions: popularized by [Moriello '19]

- Patch together h_k from power series: *I*⁽ⁿ⁾_k ∼ ∑_{j1,j2} (t − t₀)^{j1/2} log(t − t₀)^{j2}.

 Codes: DiffExp/SeaSyde/AMFlow.
- Codes: DIffExp/SeaSyde/AMFIOW. [Hidding '20] [Armadillo et al '22] [Liu, Ma '22]

[Abreu, Ita, Moriello, BP, Tschernow, Zeng '20]

Ben F	'age			
Fixed	Order	QCD:	Part	2

Integration By Parts

- Lorentz-invariance not enough to reduce to master integrals.
- Further relations from "fundamental theorem of calculus":

$$\int_a^b \mathrm{d} x F'(x) = F(b) - F(a).$$

Integration By Parts

- Lorentz-invariance not enough to reduce to master integrals.
- Further relations from "fundamental theorem of calculus":

$$\int_a^b \mathrm{d} x F'(x) = F(b) - F(a).$$

In multiple variables this is "Stokes theorem":

$$\int_R d\omega = \int_{\partial R} \omega.$$

Integration By Parts

Lorentz-invariance not enough to reduce to master integrals.

Further relations from "fundamental theorem of calculus":

$$\int_a^b \mathrm{d} x F'(x) = F(b) - F(a).$$

In multiple variables this is "Stokes theorem":

$$\int_R d\omega = 0.$$

Must take into account "integration-by-parts" relations: For Feynman Integrals total derivatives integrate to zero.

Reducing Two-Loop Amplitudes to Masters

Reduction strategy for two-loops more pedestrian:

- Total derivatives induces many relations between integrals.
- Solve the linear system via Gauss elimination.
- Many public programs for IBP reduction: FIRE, FiniteFlow, NeatIBP, LiteRed, Reduze, KIRA...
- ▶ NB: Analytic algorithm \Rightarrow all two-loop results are analytic.

Large bottleneck for high multiplicity: solving relations analytically.

Rethinking Computer Algebra: Analytic Reconstruction

Analytic coefficients built from numerical samples via Ansatz.

$$\mathcal{C}_k(p_1,\ldots,p_n)=\sum_{j=1}^{N_k}c_{jk}\mathfrak{a}_{jk}(p_1,\ldots,p_n), \qquad c_{jk}\in\mathbb{Q}.$$

Numerical evaluations provide constraints on unknown c_{jk}.

$$(p_1^{(0)},\ldots,p_n^{(0)})\longrightarrow \qquad \longrightarrow \mathcal{C}_1(p_1^{(0)},\ldots,p_n^{(0)}).$$

Made practical by finite field methods (working modulo p). [Schabinger, von Manteuffel '14; Peraro '16]

Sidesteps complex algebra – only intermediate numerics!

State-of-the-Art Two-Loop Amplitudes

Five-Point NNLO QCD (no internal masses)

Four-Point QCD/EW @ NNLO (internal masses)

Outlook

Ben Page Fixed Order QCD: Part 2 UGent 27/30

Elliptic Integrals

- > At two-loops, functions go beyond logarithm generalizations.
- Example: two-loop sunrise integral, contains "elliptic" curve.

$$\checkmark \sim \int_0^1 \mathrm{d}x \frac{\log(\chi(x,y))}{y}, \qquad \underbrace{y^2 = \prod_{i=1}^4 (x-a_i)}_{\text{elliptic curve}}.$$

- No general understanding of special functions.
- Arise frequently in cases with internal masses in the loop, e.g.

New Frontiers

▶ 3-loop: $pp \rightarrow V + j$ [leading color], dijet, diphoton.

[Caola et al '21; Gehrmann et al '23]

Some integrals for 4-jet production at NNLO.

[Henn et al '24]

Summary

- Amplitudes are a key bottleneck in making predictions.
- Modern understanding of perturbation theory has reached far.
- Tree-level/one-loop well understood (numerical algorithms).
- Frontiers:
 - Two-loop: new theoretical challenges. Results almost always analytic. Active area of research.
 - ▶ ≥ Three-loop in infancy. (No N^3LO 2 \rightarrow 2 yet).