# Gravitational wave data analysis

Lecture I



#### Elena Cuoco European Gravitational Observatory

BND School 2024 - Blankenberge, Belgium 2 – 12 Sep 2024







#### • I won't talk about general relativity

- I won't talk about technical details of detectors
- I won't go through all the techniques for different sources

#### I will go trough:

- Data conditioning techniques
- Optimal detection filter
- Transient signal search
- Application of Machine Learning techniques to GW



#### Introduction to GW



(1)

BY

A. EINSTEIN and N. ROSEN.

#### ABSTRACT.

The rigrous solution for cylindrical gravitational waves in given. For the convenience of the reader the theory of gravitational waves and their production, already known in principle, is given in the first part of this paper. After encountering relationships which cast doubt on the existence of *rigrous* solutions for undulatory gravitational fields, we investigate *rigrous* possible of cylindrical gravitational waves. It turns out that rigrouss solutions exist and that the problem reduces to the usual cylindrical waves in exclidence space.

#### I. APPROXIMATE SOLUTION OF THE PROBLEM OF PLANE WAVES AND THE PRODUCTION OF GRAVITATIONAL WAVES.

It is well known that the approximate method of integration of the gravitational equations of the general relativity theory leads to the existence of gravitational waves. The method used is as follows: We start with the equations

 $R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = -T_{\mu\nu}$ 

We consider that the  $g_{\mu\nu}$  are replaced by the expressions

credits F. Di Renzo



Free propagation along "z-axis" in vacuum ( $T_{\mu\nu} = 0$ ):

$$\Box h_{\mu\nu} = 0 \implies h_{\mu\nu}(t, z) = h_{\mu\nu}e^{i(kz - \omega t)} \quad \text{with} \quad \omega/c = k$$

Gravitational Waves (1916)



Credit:Teviet Creighton

## Solution The GW search: a long history





#### The detector





## ITF detector and their sensitivity







### GW astrophysical sources





# Why more than 1 detector?

Source localization using only timing for a two-site network yields an **annulus** on the sky.

For three detectors, the time delays restrict the source to two sky regions which are mirror images with respect to the plane passing through the three sites.

With four or more detectors, timing information alone is sufficient to localize to a single sky region,  $<10 \text{ deg}^2$  for some signals.



#### arXiv:1304.0670

- 2 detector → 100 -1000 deg<sup>2</sup>
- I 3 detector → 10 100 deg<sup>2</sup>
- 4 detector  $\rightarrow$  < 10 deg<sup>2</sup>



## The O-run timeline

The detector strain sensitivity is the minimum *detectable* value of the strain produced by an incoming GW:

 $\Rightarrow$  It is determined by the **detector noise**.

BNS inspiral range: the distance, averaged over GW polarizations and directions in the sky, at which a single detector can observe with matched-filter Signal-to-noise Ratio (SNR) of 8 the inspiral of two neutron stars.



https://observing.docs.ligo.org/plan/





#### GRAVITATIONAL WAVE MERGER DETECTIONS → SINCE 2015

| OBSERVING<br>RUN ——I | 01 2015-                  | 2016                      |                          | 02 2016-2017                    |                           |                              |                                          |                                                             |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           | 03a+b 2019-2020           |                          |
|----------------------|---------------------------|---------------------------|--------------------------|---------------------------------|---------------------------|------------------------------|------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------|--------------------------|
|                      |                           | 23 14<br>36<br>0W151012   | 14 27<br>21<br>0W151224  | 31 - 20<br>49<br>0W179184       | 1) F.a.<br>18<br>DW170408 | 10 34<br>80<br>cw170f2t      | 31 - 24<br>56<br>gwr/2080e               | 11 25<br>53<br>6W370814                                     | 1.5 1.3<br>12.8<br>owtroarr                         | от 19<br>60<br>синтрата                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40 29<br>65<br>DW179623   | 105<br>GW179463           | 26 18<br>41<br>GW179568  |
|                      | 311 6.3<br>37<br>GW1VD612 | 35 2X<br>56<br>GW120612   | 48 32<br>76<br>GW190413  | 41 32<br>32<br>70<br>CW1V0A21   | 2 1.4<br>•<br>•<br>•<br>• | 107 077<br>1/75<br>GW1996428 | 43                                       | 23 13<br>35<br>cwinestz                                     | * ************************************              | от стана с<br>Стана стана стан<br>Стана стана стан | 37 25<br>59<br>GW170517   | 44 41<br>101<br>CW119511  | 90<br>156<br>GW199521    |
|                      | 42 03<br>71<br>GW199521   | эт 23<br>56<br>силэоват   | ал<br>111<br>см176402    | 87<br>6W1V96338                 | 25                        | 54 • 41<br>90<br>GW1992781   | 47 <b>3</b> 4<br>99<br>Dec140704         | 12 8.4<br>19<br>GW196767                                    | 18 13<br>30<br>ownedias                             | 37 31<br>55<br>55<br>55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13 7.8<br>20<br>001190720 | 12 4.4<br>17<br>000199725 | 38 29<br>64<br>GW199727  |
|                      | 12 8.1<br>20<br>0W199728  | 42 27<br>67<br>67<br>67   | ат<br>ат<br>смітезноз    | но эт<br>37<br>76<br>сим 1960ор | 23 2.5<br>26<br>0w110814  | 32 24<br>55<br>0W192828      | * * 10<br>24 10<br>33<br>perindate       | с. 26<br>76<br>смітерно                                     | * 24<br>57<br>691190115                             | ** ***********************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | *3 2.1<br>11<br>awreest   | 13<br>owroppes            | 21 16<br>35<br>GW192925  |
|                      | 40 23<br>61<br>GW190024   | 102<br>GW180728           | 12 7.8<br>19<br>GW190935 | 12 7.9<br>19<br>awistisa        | 11 7.7<br>18<br>GW191105  | 45 47<br>107<br>GW191188     | 29 8.9<br>34<br>GW191113                 | 12 8.3<br>20<br>001111724                                   | ял 74<br>76<br>Билиния                              | 11 47<br>17<br>64191129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 27 19<br>45<br>GW191294   | 12 8.2<br>19<br>GW191204  | 25 11<br>41<br>owter215  |
|                      | 12 7.7<br>19<br>00197216  | 31 1.2<br>32<br>600191219 | 45 25<br>76<br>6W191222  | 82<br>000191230                 | v 1.9<br>11<br>sw200105   | -34 78<br>61<br>GW200112     | 5.9 1A<br>7.2<br>DH/200115               | 42 33<br>71<br>6W200128                                     | ан ал<br>60<br>бикаролан                            | 10 7.3<br>17<br>6w200202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30 27<br>63<br>GW200208   | 51 12<br>61<br>owrsecae   | 14 27<br>60<br>600205260 |
|                      | 24 2.8<br>27<br>6W200210  | 51 50<br>78<br>GW200716   | 11 78<br>62<br>64700219  | 141<br>www.coszan               | 29 28<br>64<br>GHI20220   | 40 33<br>69<br>GW206226      | 19 14<br>32<br>69/10115                  | 38 20<br>56<br>cw105313                                     | 28 15<br>42<br>6W210104                             | 34 14<br>47<br>ewiteties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 34 28<br>59<br>69/100111  | 13 7.8<br>20<br>6w700314  | 34 14<br>53<br>6w201112  |
| KEY                  |                           |                           |                          |                                 |                           |                              |                                          |                                                             |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |                           |                          |
| BLACK HOLE           |                           |                           | NEUTRON STAR             |                                 |                           |                              | Note that the mass<br>which is why the f | s estimates shown here do n<br>Inal mass is scenetimes larg | at include uncertainties,<br>in than the sam of the |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14                        |                           | KIC                      |

PRIMARY MASS FINAL MASS

UNCERTAIN OBJECT SECONDARY MASS DATE

UNITS ARE SOLAR MASSES 1 SOLAR MASS = 1.989 x 10<sup>30</sup>kg than the primary plus the secondary mass.

The events listed here pass one of two thresholds for detection. They either have a probability of being astrophysical of at least 52%, or they page a false plane rate threshold of less than 1 per 3 years.





Image credit: Carl Knox,Hannah Middleton, Federica Grigoletto, LVK



# GW170817: the first multi-messenger event



Abbott et al. 2017 and refs. therein





https://gracedb.ligo.org/superevents/public/O4/

#### GW Detections

O4 Significant Detection Candidates: **81** (92 Total - 11 Retracted) O4 Low Significance Detection Candidates: **1610** (Total)





#### GW detector data

• Time series sequences... noisy time series with low amplitude GW signal buried in



# Time series

- A time series x[n] is a sequence of data points measuring a physical quantity at successive times spaced at uniform time intervals.
- We say that x[n] is a stationary process, if its statistical description does not depend on n.







# Signal processing utilities

# Encapsulating the data information



### Autocorrelation function

#### Definition

Given a discrete random process x[n] we define the *mean* as

$$\mathscr{E}\{x[n]\} = \mu_x$$

#### Definition

The autocorrelation function (ACF)

$$r_{xx}[k] = \mathscr{E}\{x^*[n]x[n+k]\}$$



#### Autocovariance function

#### Definition

The autocovariance function is defined as

$$c_{xx}[k] = \mathscr{E}\{(x^*[n] - \mu_x)(x[n+k] - \mu_x)\} = r_{xx}[k] - |\mu_x|^2$$

Similar definition for cross-correlation bewteen x[n] and y[n]. Some properties of ACF:

$$r_{xx}[0] \ge |r_{xx}[k]|$$
  $r_{xx}[-k] = r^*_{xx}[k]$   $r_{xy}[-k] = r^*_{yx}[k]$ 



#### Power Spectral Density

#### Definition

We define the *Power Spectral Density* (PSD)

$$P_{xx}(f) = \sum_{k=-\infty}^{k=\infty} r_{xx}[k] \exp(-i2\pi fk) \quad P_{xy}(f) = \sum_{k=-\infty}^{k=\infty} r_{xy}[k] \exp(-i2\pi fk)$$

This relationship between PSD and ACF is often known as Wiener-Khinchin theorem.

The PSD describe the content in frequency in power of the signal x[n]. In the following we will refer to  $P_{xx}(f)$  as PSD The PSD is periodic with period 1. The frequency interval  $-1/2 \le f \le 1/2$  will be considered as the fundamental period. The ACF is the inverse Fourier transform of the PSD and hence

$$r_{xx}[0] = \int_{-1/2}^{1/2} P_{xx}(f) df$$





One particular process is the discrete white noise. It si defined as a process having as ACF

$$r_{xx}[k] = \sigma_x^2 \delta[k]$$

where  $\delta[k]$  is the delta function.

The PSD of such a process is a flat function with the same value for all the frequency f



$$P_{xx}(f) = \sigma_x^2$$





### Gaussian random process

A Gaussian sthocastic process is one for which each set  $\{x[n_0], x[n_1] \dots x[n_{N-1}]\}$  is distributed as a multivariate Gaussian PDF. If we assume that the process is stationary with zero-mean, then the covariance matrix is the autocorrelation matrix  $\mathbf{r}_{xx}$ 

$$\mathbf{r}_{xx} = \begin{bmatrix} r_{xx}[0] & r_{xx}[-1] & \dots & r_{xx}[-(N-1)] \\ r_{xx}[1] & r_{xx}[0] & \dots & r_{xx}[-(N-2)] \\ \vdots & \vdots & \ddots & \vdots \\ r_{xx}[N-1] & r_{xx}[N-2] & \dots & r_{xx}[0] \end{bmatrix}$$
(1)  
$$r_{xx}[k] = \mathscr{E}\{x^*[n]x[n+k]\}.$$
(2)

We can write the probability density function of a real random gaussian process a

$$P[\mathbf{x}] = \frac{1}{(2\pi)^{N/2} |\mathbf{r}_{xx}|^{1/2}} e^{\mathbf{x} T \mathbf{r}_{xx}^{-1} \mathbf{x}}.$$
 (3)



# White random Gaussian process

It is a process x[n] with mean zero and variance  $\sigma_x^2$  for which

$$x[n] \sim N(0, \sigma_x^2) \qquad -\infty < n < \infty$$

$$r_{xx}[m-n] = \mathscr{E}(x[n]x[m])) = 0 \qquad m \neq n$$

where  $x \sim N(\mu_x, \sigma_x^2)$  means that x[n] is Gaussian distributed with a probability density function

$$p(x) = \frac{1}{\sqrt{2\pi\sigma_x}} \exp\left[-\frac{1}{2}\left(\frac{x-\mu_x}{\sigma_x}\right)^2\right] \qquad -\infty < x < \infty$$



### Gaussian noise distribution

The distribution is characterized by its bell-shaped curve, which is symmetrical around the mean value. The mean, median, and mode of the distribution are all equal, and the standard deviation determines the width of the curve.







# Gravitational Wave signal detection







**GW Signal Detection and Matched Filter** for known waveforms

- Defining the problem
- The Neyman Pearson Criteria
- The Matched Filter

Switch to pdf slides...:)



# Optimal Filter is Matched Filter, if the noise minimum is gaussian distributed

Maximizing the likelihood



Noise power spectral density

Look for maxima of  $|\rho(t)|$  above some threshold  $\rightarrow$  trigger





- pyCBC (Usman et al, 2015)
- MBTA (Adams et al. 2015)
- gstlal-SVD (Cannon et al. 2012)





# How we detect transient signals: modeled search





#### CBC template generation



$$h(f) = A(f)e^{i\Phi(f)}$$

$$\Phi(f) = \sum_{k=1}^{7} (\varphi_k + \varphi_k^l \log(f))f^{(5-k)/3} + \sum_{i \neq k} \varphi_i f^i$$

$$\varphi_j \equiv \varphi_j(m_1, m_2, \vec{s}_1, \vec{s}_2) \ \forall j = k, i$$



### **CBC** template generation





#### How many templates?

To cover in efficient way the parameters space, we build a templates bank requiring that the signal can be detected with a maximum loss of 3% of its SNR





LVC Phys. Rev. X 6 (2016)

#### Parameter estimation

 $p(\theta|d,H) = \frac{p(\theta|H)p(d|\theta,H)}{p(d|H)}.$ 

- MCMC and Nested Sampling
  - MCMC Random steps are taken in parameter space, according to a proposal distribution, and accepted or rejected according to the Metropolis-Hastings algorithm.
  - Nested sampling can also compute evidences for model selection.

#### Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library



LVC (PRL:116, 241102)

J. Veitch et al. Phys. Rev. D 91, 042003

# Data mapping, preserving the info

| 01 | Time-domain           | • Time-series at the output of the detector (be careful with the sampling theorem)                                                                                                         |
|----|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 02 | Frequency-domain      | <ul> <li>Fourier transform         <ul> <li>Useful for stationary data</li> <li>Useful for persistent signals</li> <li>It captures the global frequency information</li> </ul> </li> </ul> |
| 03 | Time-frequency domain | <ul> <li>Short Fourier Transform         <ul> <li>Useful for not stationary data</li> <li>Useful for transient signals</li> </ul> </li> </ul>                                              |
| 04 | Others                | <ul> <li>Wavelet decomposition (useful for<br/>multiresolution analysis)</li> <li>Q-Transform (useful for transient)</li> <li>Hough-transform (useful for lines)</li> </ul>                |



# Time-Frequency domain: STFT

The short time Fourier transform (STFT) function is simply the Fourier transform operating on a small section of the data. Here a moving window is applied to the signal and the fourier transform is applied to the signal within the window as the window is moved.

$$STFT\{x(t)\} = X(\tau, f) = \int_{-\infty}^{\infty} x(t)g(t-\tau)\exp(-2i\pi ft)dt$$





#### Spectrogram

To have easy access to the information of the STFT we can plot the spectrogram. It is defined as

 $\textit{Spectrogram}(\tau, f) = |X(\tau, f)|^2$ 

So we will have a bidimensional plot where on x-axis usually is plotted the time, on y-axis the frequency, while the color of the map is the the amplitude of a particular frequency at a particular time.





# Wavelet decomposition of time series

The wavelet transform replaces the Fourier transform sinusoidal waves by a family generated by translations and dilations of a window called a wavelet.



$$W\!f(a,b)=< f,\psi_{a,b}>=\int_{-\infty}^{+\infty}f(t)rac{1}{\sqrt{b}}\psi^*(rac{t-a}{b}) dt$$

The scale of the wavelet is determined by the parameter **b**.

- When **b** is decreased, the wavelet appears more compressed, allowing it to capture high-frequency information.
- Increasing the value of **b** elongates the wavelet, enabling it to capture low-frequency information.

The location of the wavelet is determined by the parameter **a**.

- If we decrease the value of **a**, the wavelet will be shifted to the left, whereas an increase in **a** will shift it to the right.
- Note that the location of the wavelet is crucial because, unlike waves, wavelets are only non-zero within a short interval.

#### ② Data representations





·



*Time-frequency-domain* 



#### Wavelet-domain



Spectrogram of V1:spectro\_LSC\_DARM\_300\_100\_0\_0 : start=1189644747.000000 (Sun Sep 17 00:52:09 2017 UTC)



# Data preprocessing



Spectrogram of V1:spectro\_LSC\_PRCL\_300\_100\_0\_0 : start=1189731268.000000 (Mon Sep 18 00:54:10 2017 UTC)









We can do in frequency domain estimating the PSD









# Signals in whitened data



#### Not Whitened

Whitened



39

# Whitening in time domain

# We need parametric modeling

It can be useful for on-line application

It can be implemented for non stationary noise

It can catch the autocorrelation function to larger lags





# AR parametric modeling

An AutoRegressive process is governed by this relation

$$x[n] = -\sum_{k=1}^{p} a[k]x[n-k] + w[n],$$

and its PSD for a process of order P is given by

$$P_{AR}(f) = \frac{\sigma^2}{|1 + \sum_{k=1}^{P} a_k \exp(-i2\pi kf)|^2}$$

Kay S 1988 Modern spectral estimation: Theory and Application Prentice Hall Englewood Cliffs



# Advantages of AR modeling

 Stable and causal filter: same solution of linear predictor filter

$$\hat{x}[n] = \sum_{k=1}^{P} w_k x[n-k]$$

$$e[n] = x[n] - \hat{x}[n]$$
$$\varepsilon_{min} = r_{xx}[0] - \sum_{k=1}^{P} w_k r_{xx}[-k],$$

$$w_k = -a_k$$
  
 $\varepsilon_{min} = \sigma^2$ 

Wiener-Hopf equations





#### PSD AR(P) Fit



Cuoco et al. Class.Quant.Grav. 18 (2001) 1727-1752 and Cuoco et al.Phys.Rev.D64:122002,2001



#### Control The effect of whitening







# Searches for unmodeled signals

# What we do for signals with unknown waveforms



Computer simulation of gravitational waves emitted by a supernova. Credit: J Powell / B Mueller





- Strategy: look for excess power in single detector or coherent/coincident in network data
- Example cWB

#### (https://gwburst.gitlab.io/)

- Time-domain data preprocessed
- Wavelet decomposition
- Event reconstruction

#### **Burst search**

# How we detect transient signals: un-modeled search

Coherent WaveBurst was used in the first direct detection of gravitational waves (GW150914) by LIGO and is used in the ongoing analyses on LIGO and Virgo data.



Time-Frequency maps of GW150914: Livingston data (left), Hanford data (right) First screenshot of GW150914 event

Phys. Rev. D 93, 042004 (2016) Class.Quant.Grav.25:114029,2008



#### **Coherent WaveBurst**

Excess power are selected from a set of wavelet time-frequency maps Data from both detector are combined together

Triggers are analyzed coherently to estimate signal waveform, wave polarization, source location, using the constrained likelihood method



Selects the best fit waveform which corresponds to the maximum likelihood statistic over a 200000 sky positions



The event are ranked using a variable  $\eta_c$ 

 $E_c$  > Normalized coherent energy between the two detectors  $E_n$  > normalized noise energy derived by subtracting the reconstructed signal from the data

$$=\sqrt{\frac{2E_c}{(1+E_n/E_c)}}$$

 $\eta_c$ 





# **Coherent WaveBurst**

- End-to-end multi-detector coherent pipeline
  - o construct coherent statistics for detection and rejection of artifacts
  - performs search over the entire sky
  - estimates background with time shifts





#### Time-Frequency distribution by SNR slice

V1:Hrec\_hoft\_16384Hz: Time frequency glitchgram





1000 million and a second and a

#### Section From a glitch-gram to Event selection

- Select the trigger in coincidence among the detector  $\Leftrightarrow$
- Perform data quality check
- Apply veto procedure
- Define the coincidence level of detection





#### PhysRevLett.116.061102

 $> 5.1\sigma$ 

 $> 5.1\sigma$ 

GW150914

4σ5.1σ

20

## Low latency analysis



#### From few minutes to 30 mi

| Pipelines running                                                                                                                                                                                   | Pipelines assess                                                                                                                                                                                                                   | Data Quality evaluated   | Initial alert released on                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| real time                                                                                                                                                                                           | the significance                                                                                                                                                                                                                   | autonomously for initial | order of 1 minute; Notice on                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| •                                                                                                                                                                                                   | of candidate                                                                                                                                                                                                                       | alert                    | order of 10 minutes                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| <ul> <li>4 low-latency<br/>CBC search<br/>pipelines:<br/>GstLAL,<br/>MBTAOnline,<br/>PyCBC Live,<br/>and SPIIR</li> <li>I GW burst<br/>search pipeline:<br/>cWB (Coherent<br/>WaveBurst)</li> </ul> | <ul> <li>False Alarm<br/>Rate (FAR)<br/>based on<br/>empirically<br/>measured noise<br/>properties</li> <li>The initial<br/>searches focus<br/>on detection, not<br/>on estimating<br/>the parameters<br/>of the source</li> </ul> | GCN notice               | Root         IVORN         Role         Who         Date         Author         WhereWhen         What         GraceID         Packet Type         Notice Type         FAR         Sky Map         Group         Pipeline         CentralFreq         Duration         Fluence         BNS, NSBH,         BBH, Noise         HasNS,         HasRemnant | <pre>ivo://nasa.gsfc.gcn/LVC#[{T,M}]S {Preliminary,Initial,Update,Prel {observation,test} Time sent (UTC, ISO-8601), e.g. 201 LIGO Scientific Collaboration an Time of signal (UTC, ISO-8601), e.g. GraceDb ID: [{T,M}]SYYMMDabc. Ex GCN Notice type: {Preliminary,Init Numerical equivalent of GCN Notice Estimated false alarm rate in Hz URL of HEALPix FITS localization f CBC {GstLal,MGTAOnLine,PyCBC,SPIIR} N/A Probability that the source is a BNS,NSBH,NSBH merger, or terrestrial (i.e., noise) respectively Probability, under the assumption that the source is on rose, that at least one of the compact objects was a neutron star, and that the system ejected a nonzero amount of neutron star matter, respectively.</pre> | YYMMDDabc-{1,2,3}-<br>iminary-Retraction}<br>8-11-01T22:34:49<br>d Virgo Collaboration<br>2018-11-01T22:22:46.654437<br>ample: MS181101abc<br>ttal./update}<br>ttal./update}<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./update<br>ttal./upd |  |  |



#### GraceDB — Gravitational-Wave Candidate Event Database

HOME PUBLIC ALERTS SEARCH LATEST DOCUMENTATION

#### LIGO/Virgo O3 Public Alerts

#### **Detection candidates: 35**

#### SORT: EVENT ID (A-Z)

| Event ID         | Possible Source (Probability) | UTC                            | GCN                                          | Location                      | FAR                       | Comments  |
|------------------|-------------------------------|--------------------------------|----------------------------------------------|-------------------------------|---------------------------|-----------|
| <u>5191117j</u>  | NSBH (>99%)                   | Nov. 17, 2019<br>06:08:22 UTC  | <u>GCN Circulars</u><br><u>Notices   VOE</u> |                               | 1 per 2.8433e+10<br>years | RETRACTED |
| <u>5191110af</u> |                               | Nov. 10, 2019<br>23:06:44 UTC  | <u>GCN Circulars</u><br><u>Notices   VOE</u> | No public skymap image found. | 1 per 12.681 years        | RETRACTED |
| <u>5191110x</u>  | MassGap (>99%)                | Nov. 10, 2019<br>18:08:42 UTC  | <u>GCN Circulars</u><br><u>Notices   VOE</u> |                               | 1 per 1081.7 years        | RETRACTED |
| <u>5191109d</u>  | BBH (>99%)                    | Nov. 9, 2019<br>01:07:17 UTC   | <u>GCN Circulars</u><br><u>Notices   VOE</u> |                               | 1 per 2.062e+05<br>years  |           |
| <u>5191105e</u>  | BBH (95%), Terrestrial (5%)   | Nov. 5, 2019<br>14:35:21 UTC   | GCN Circulars<br>Notices   VOE               |                               | 1 per 1.3881 years        |           |
| <u>5190930t</u>  | NSBH (74%), Terrestrial (26%) | Sept. 30, 2019<br>14:34:07 UTC | <u>GCN Circulars</u><br><u>Notices   VOE</u> |                               | 1 per 2.0536 years        |           |

https://gracedb.ligo.org/superevents/public/03/





#### Time since gravitational-wave signal







# Can Machine learning help?

