Gravitational wave data analysis

Lecture I

Elena Cuoco European Gravitational Observatory

BND School 2024 - Blankenberge, Belgium 2 – 12 Sep 2024

● I won't talk about general relativity

- I won't talk about technical details of detectors
- I won't go through all the techniques for different sources

I will go trough:

- Data conditioning techniques
- Optimal detection filter
- Transient signal search
- Application of Machine Learning techniques to GW

Introduction to GW

ON GRAVITATIONAL WAVES.

BY A. EINSTEIN and N. ROSEN.

ABSTRACT.

The rigorous solution for cylindrical gravitational waves is given. For the convenience of the reader the theory of gravitational waves and their production. already known in principle, is given in the first part of this paper. After encountering relationships which cast doubt on the existence of rigorous solutions for undulatory gravitational fields, we investigate rigorously the case of cylindrical gravitational waves. It turns out that rigorous solutions exist and that the problem reduces to the usual cylindrical waves in euclidean space.

I. APPROXIMATE SOLUTION OF THE PROBLEM OF PLANE WAVES AND THE PRODUCTION OF GRAVITATIONAL WAVES.

It is well known that the approximate method of integration of the gravitational equations of the general relativity theory leads to the existence of gravitational waves. The method used is as follows: We start with the equations

 $R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = -T_{\mu\nu}.$

 $(\mathbf{1})$

We consider that the $g_{\mu\nu}$ are replaced by the expressions

Free propagation along "z-axis" in vacuum ($T_{\mu\nu} = 0$):

$$
\Box h_{\mu\nu} = 0 \implies h_{\mu\nu}(t, z) = h_{\mu\nu} e^{i(kz - \omega t)} \quad \text{with} \quad \omega/c = k
$$

Gravitational Waves (1916)

Example GW search: a long history

WWWWWWWWWWWWWWW

Solution The detector

WWWWWWWW

ITF detector and their sensitivity

wwwwwwwwww

GW astrophysical sources

EGO - Virgo $\mathcal{U}(\mathcal{O})$ wwwwwwwwwww

Why more than 1 detector?

Source localization using only timing for a two-site network yields an **annulus** on the sky.

For three detectors, the time delays restrict the source to **two sky regions** which are mirror images with respect to the plane passing through the three sites.

With four or more detectors, timing information alone is sufficient to localize to a <u>single sky region</u>, <10 <u>deg² for some signals.</u>

arXiv:1304.0670

- 2 detector \rightarrow 100 -1000 deg²
- 3 detector \rightarrow 10 100 deg²
- 4 detector \rightarrow < 10 deg²
-

The O-run timeline

The detector strain sensitivity is the minimum *detectable* value of the strain produced by an incoming GW:

 \Rightarrow It is determined by the detector noise.

BNS inspiral range: the distance, averaged over GW polarizations and directions in the sky, at which a single detector can observe with matched-filter Signal-to-noise Ratio (SNR) of 8 the inspiral of two neutron stars.

ELENA CUOCO POSTA ELENA CUOCO COMPOSTA ELENA CUOCO COMPOSTA ELENA CUOCO COMPOSTA ELENA CUOCO COMPOSTA ELENA COMPOSTA https://observing.docs.ligo.org/plan/

GRAVITATIONAL WAVE MERGER DETECTIONS \rightarrow SINCE 2015

PRIMARY MASS **FINAL MASS**

· UNCERTAIN OBJECT SECONDARY MASS DATE

UNITS ARE SOLAR MASSES 1 SOLAR MASS = 1.989 x 10³⁸kg

that the primary plus the secondary mass.

The events listed here pass one of two thresholds for detection. They either have a probability of being actrophysical of at least SDS.
or they gaze a false playm rate threshold of less than 1 per 3 years.

Image credit: Carl Knox,Hannah Middleton, Federica Grigoletto, LVK

GW170817: the first multi-messenger event

Abbott et al. 2017 and refs. therein

https://gracedb.ligo.org/superevents/public/O4/

GW Detections

O4 Significant Detection Candidates: **81** (92 Total - 11 Retracted) O4 Low Significance Detection Candidates: **1610** (Total)

GW detector data

● Time series sequences… noisy time series with low amplitude GW signal buried in

Time series

- A time series x[n] is a sequence of data points measuring a physical quantity at successive times spaced at uniform time intervals.
- \bullet We say that $x[n]$ is a stationary process, if its statistical description does not depend on n.

Signal processing utilities Encapsulating the data

information

Autocorrelation function \bigcirc

Definition

Given a discrete random process $x[n]$ we define the *mean* as

$$
\mathscr{E}\{x[n]\}=\mu_x
$$

Definition

The autocorrelation function (ACF)

$$
r_{xx}[k] = \mathscr{E}\{x^*[n]x[n+k]\}
$$

Autocovariance function \mathbb{C}

Definition

The *autocovariance* function is defined as

$$
c_{xx}[k] = \mathscr{E}\{(x^*[n]-\mu_x)(x[n+k]-\mu_x)\} = r_{xx}[k]-|\mu_x|^2
$$

Similar definition for cross-correlation bewteen $x[n]$ and $y[n]$. Some properties of ACF:

$$
r_{xx}[0] \geq |r_{xx}[k]| \qquad r_{xx}[-k] = r_{xx}^*[k] \qquad r_{xy}[-k] = r_{yx}^*[k]
$$

Power Spectral Density

Definition

We define the *Power Spectral Density* (PSD)

$$
P_{xx}(f) = \sum_{k=-\infty}^{k=\infty} r_{xx}[k] \exp(-i2\pi f k) \quad P_{xy}(f) = \sum_{k=-\infty}^{k=\infty} r_{xy}[k] \exp(-i2\pi f k)
$$

This relationship between PSD and ACF is often known as Wiener-Khinchin theorem.

ľ

The PSD describe the content in frequency in power of the signal $x[n]$. In the following we will refer to $P_{xx}(f)$ as PSD The PSD is periodic with period 1. The frequency interval $-1/2 \le f \le 1/2$ will be considered as the fundamental period. The ACF is the inverse Fourier transform of the PSD and hence

$$
f_{xx}[0] = \int_{-1/2}^{1/2} P_{xx}(f) df
$$

One particular process is the discrete white noise. It si defined as a process having as ACF

$$
r_{xx}[k] = \sigma_x^2 \delta[k]
$$

where $\delta[k]$ is the delta function.

The PSD of such a process is a flat function with the same value for all the frequency f

$$
P_{xx}(f) = \sigma_x^2
$$

Gaussian random process

A Gaussian sthocastic process is one for which each set $\{x[n_0], x[n_1], \ldots x[n_{N-1}]\}\$ is distribuited as a multivariate Gaussian PDF. If we assume that the process is stationary with zero-mean, then the covariance matrix is the autocorrelation matrix \mathbf{r}_{xx}

$$
\mathbf{r}_{xx} = \begin{bmatrix} r_{xx}[0] & r_{xx}[-1] & \dots & r_{xx}[-(N-1)] \\ r_{xx}[1] & r_{xx}[0] & \dots & r_{xx}[-(N-2)] \\ \vdots & \vdots & \ddots & \vdots \\ r_{xx}[N-1] & r_{xx}[N-2] & \dots & r_{xx}[0] \\ r_{xx}[k] = \mathcal{E}\{x^*[n]x[n+k]\} \end{bmatrix} \qquad (1)
$$

We can write the probability density function of a real random gaussian process a

$$
P[\mathbf{x}] = \frac{1}{(2\pi)^{N/2} |\mathbf{r}_{xx}|^{1/2}} e^{\mathbf{x} \mathbf{T} \mathbf{r}_{xx}^{-1} \mathbf{x}}.
$$
 (3)

White random Gaussian process

It is a process $x[n]$ with mean zero and variance σ^2 for which

$$
x[n] \sim N(0, \sigma_x^2) \qquad -\infty < n < \infty
$$

$$
r_{xx}[m-n] = \mathscr{E}(x[n]x[m])) = 0 \qquad m \neq n
$$

where $x \sim N(\mu_x, \sigma_x^2)$ means that $x[n]$ is Gaussian distributed with a probability density function

$$
p(x) = \frac{1}{\sqrt{2\pi}\sigma_{x}} \exp[-\frac{1}{2}(\frac{x-\mu_{x}}{\sigma_{x}})^{2}] \qquad -\infty < x < \infty
$$

Gaussian noise distribution

The distribution is characterized by its bell-shaped curve, which is symmetrical around the mean value. The mean, median, and mode of the distribution are all equal, and the standard deviation determines the width of the curve.

Gravitational Wave signal detection

GW Signal Detection and Matched Filter for known waveforms

- Defining the problem
- The Neyman Pearson Criteria
- The Matched Filter

[Switch to pdf slides](https://drive.google.com/file/d/1cpnp88N4vuxdEekAdjdx6Yaq2ODEk45o/view?usp=sharing)…:)

Optimal Filter is Matched Filter, if the noise is gaussian distributed

Maximizing the likelihood

Noise power spectral density

Look for maxima of $|\rho(t)|$ above some threshold > trigger

- pyCBC (Usman et al, 2015) \bullet
- MBTA (Adams et al. 2015) \bullet
- gstlal-SVD (Cannon et al. \bullet 2012)

How we detect transient signals: modeled search

CBC template generation

$$
h(f) = A(f)e^{i\Phi(f)}
$$

\n
$$
\Phi(f) = \sum_{k=1}^{7} (\varphi_k + \varphi_k^l \log(f)) f^{(5-k)/3} + \sum_{i \neq k} \varphi_i f^i
$$

\n
$$
\varphi_j \equiv \varphi_j(m_1, m_2, \vec{s}_1, \vec{s}_2) \ \forall j = k, i
$$

28

训

wwwwwwwwwww

CBC template generation

29

EXECUTE: How many templates?

To cover in efficient way the parameters space, we build a templates bank requiring that the signal can be detected with a maximum loss of 3% of its SNR

LVC Phys. Rev. X 6 (2016)

Parameter estimation

 $p(\theta|d,H) = \frac{p(\theta|H)p(d|\theta,H)}{p(d|H)}$

- MCMC and Nested Sampling
	- MCMC Random steps are taken in parameter space, according to a proposal distribution, and accepted or rejected according to the Metropolis-Hastings algorithm.
	- Nested sampling can also compute evidences for model selection.

 $20h$

J. Veitch et al. Phys. Rev. D 91, 042003

LVC (PRL:116, 241102)

Data mapping, preserving the info

Time-Frequency domain: STFT

The short time Fourier transform (STFT) function is simply the Fourier transform operating on a small section of the data. Here a moving window is applied to the signal and the fourier transform is applied to the signal within the window as the window is moved.

$$
STFT\{x(t)\}=X(\tau,f)=\int_{-\infty}^{\infty}x(t)g(t-\tau)\exp(-2i\pi ft)dt
$$

Spectrogram

To have easy access to the information of the STFT we can plot the spectrogram. It is defined as

 $Spectrogram(\tau, f) = |X(\tau, f)|^2$

So we will have a bidimensional plot where on x-axis usually is plotted the time, on y-axis the frequency, while the color of the map is the the amplitude of a particular frequency at a particular time.

Wavelet decomposition of time series

The wavelet transform replaces the Fourier transform sinusoidal waves by a family generated by translations and dilations of a window called a wavelet.

$$
\mathsf{Wf}(a,b)==\int_{-\infty}^{+\infty}f(t)\frac{1}{\sqrt{b}}\psi^{*}(\frac{t-a}{b})\ dt
$$

The scale of the wavelet is determined by the parameter **b**.

- When **b** is decreased, the wavelet appears more compressed, allowing it to capture high-frequency information.
- Increasing the value of **b** elongates the wavelet, enabling it to capture low-frequency information.

The location of the wavelet is determined by the parameter **a**.

- If we decrease the value of **a**, the wavelet will be shifted to the left, whereas an increase in **a** will shift it to the right.
- Note that the location of the wavelet is crucial because, unlike waves, wavelets are only non-zero within a short interval.

Data representations

WWWWWWWW

Time-frequency-domain Wavelet-domain

Data preprocessing

Spectrogram of V1:spectro_LSC_PRCL_300_100_0_0 : start=1189731268.000000 (Mon Sep 18 00:54:10 2017 UTC)

We can do in frequency domain estimating the PSD

 $\rho(t) = 4 \int_{0}^{\infty} \frac{\widetilde{x}(f) \widetilde{h}^{*}(f)}{S_{n}(f)} e^{2\pi i f t} df$

Signals in whitened data

Not Whitened

WWWWWWWWWWWWWWW

Whitening in time domain

We need parametric modeling

It can be useful for on-line application

It can be implemented for non stationary noise

It can catch the autocorrelation function to larger lags

AR parametric modeling

An AutoRegressive process is governed by this relation

$$
x[n] = -\sum_{k=1}^p a[k]x[n-k] + w[n],
$$

and its PSD for a process of order P is given by

$$
P_{AR}(f) = \frac{\sigma^2}{|1 + \sum_{k=1}^P a_k \exp(-i2\pi k f)|^2}
$$

Kay S 1988 Modern spectral estimation: Theory and Application Prentice Hall Englewood Cliffs

Advantages of AR modeling

▪ Stable and causal filter: same solution of **linear predictor filter**

$$
\hat{x}[n] = \sum_{k=1}^{P} w_k x[n-k]
$$

$$
e[n] = x[n] - \hat{x}[n]
$$

$$
\varepsilon_{\min} = r_{xx}[0] - \sum_{k=1}^{P} w_k r_{xx}[-k],
$$

$$
w_k = -a_k
$$

$$
\varepsilon_{\min} = \sigma^2
$$

Wiener-Hopf equations

PSD AR(P) Fit

Cuoco et al. Class.Quant.Grav. 18 (2001) 1727-1752 and Cuoco et al.Phys.Rev.D64:122002,2001

WWWWWWWWWWWWW

The effect of whitening

WWWWWWW

Searches for unmodeled signals

What we do for signals with unknown waveforms

[Computer simulation of gravitational waves](https://cerncourier.com/wp-content/uploads/2022/03/supernova.png) emitted [by a supernova. Credit: J Powell / B Mueller](https://cerncourier.com/wp-content/uploads/2022/03/supernova.png)

- Strategy: look for excess power in single detector or coherent/coincident in network data
- Example cWB

[\(https://gwburst.gitlab.io/\)](https://gwburst.gitlab.io/)

- Time-domain data preprocessed
- Wavelet decompostion
- Event reconstruction

Burst search

How we detect transient signals: un-modeled search

Coherent WaveBurst was used in the first direct detection of gravitational waves (GW150914) by LIGO and is used in the ongoing analyses on LIGO and Virgo data.

Time-Frequency maps of GW150914: Livingston data (left), Hanford data (right) First screenshot of GW150914 event

Phys. Rev. D 93, 042004 (2016) Class.Quant.Grav.25:114029,2008

Coherent WaveBurst

Excess power are selected from a set of wavelet time-frequency maps Data from both detector are combined together

Triggers are analyzed coherently to estimate signal waveform, wave polarization, source location, using the constrained likelihood method

Selects the best fit waveform which corresponds to the maximum likelihood statistic over a 200000 sky positions

EGO - Virac

The event are ranked using a variable η_c

 $E_c \rightarrow$ Normalized coherent energy between the two detectors $E_n \rightarrow$ normalized noise energy derived by subtracting the reconstructed signal from the data

$$
=\sqrt{\frac{2E_c}{(1+E_n/E_c)}}
$$

 η_c

Coherent WaveBurst

- **●** End-to-end multi-detector coherent pipeline
	- construct coherent statistics for detection and rejection of artifacts
	- performs search over the entire sky
	- estimates background with time shifts

Time-Frequency distribution by SNR slice

V1:Hrec_hoft_16384Hz: Time frequency glitchgram

wwwwwwwwwww

From a glitch-gram to Event selection

- ❖ **Select the trigger in coincidence among the detector**
- ❖ **Perform data quality check**
- ❖ **Apply veto procedure**
- ❖ **Define the coincidence level of detection**

EGO - Virgo *((Q))*

PhysRevLett.116.061102

Low latency analysis

EGO - Virgo

 $\mathcal{U}(\mathcal{O})$

N

51

GraceDB - Gravitational-Wave Candidate Event Database

HOME PUBLIC ALERTS SEARCH LATEST DOCUMENTATION

LIGO/Virgo O3 Public Alerts

Detection candidates: 35

SORT: EVENT ID (A-Z) ^v

<https://gracedb.ligo.org/superevents/public/O3/>

Time since gravitational-wave signal

wwwwwwwwww

Can Machine learning help?

