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Gravitational Waves and Machine Learning 
application: Outline

 

● The data analysis workflow recap

● The real data

● Machine Learning and Deep Learning

● Machine Learning for Glitch classification

● Machine Learning for GW Signal Detection and classification
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The data analysis workflow



Noise budget: fundamental vs. actual
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The Real Data
The noise it not at all ideal…
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I. Fiori courtesy
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Not linear and not stationary noise



https://www.zooniverse.org/projects/zooniverse/gravity-spy
Gravity Spy, Zevin et al (2017)
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Transient noise signals: Glitches



Abbott et al. (2017) 

Glitch mitigation

GW 170817Ligo Livingston
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The importance of glitch analysis

8https://arxiv.org/pdf/2002.11668.pdf

https://doi.org/10.1103/PhysRevLett.119.161101


● Our data: a lot of noise and few GW signals (soon will be many)

● Low SNR signals (overlapping signals)

● Many transient noise disturbances (glitches)

● Not stationary/not linear noise (strange noise coupling)

● Many monitoring auxiliary channels (“big” data)

● Computational and timing efficiency (Fast alert system)
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Why artificial Intelligence for GW data?



 How Machine Learning can help

Data conditioning

● Identify Non linear noise coupling
● Use Deep Learning to remove 

noise
● Extract useful features to clean 

data

Signal Detection/Classification/PE

● A lot of fake signals due to 
noise

● Fast alert system
● Manage parameter estimation
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B P Abbott et al 2020 
Class. Quantum Grav. 37 
055002

Area where 
ML can help

Machine Learning 
everywhere

The data analysis workflow and ML



Machine learning: 
a short overview
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Arthur Samuel in 1959: “[Machine Learning is the] field 
of study that gives computers the ability to learn without 
being explicitly programmed.”

● Machine Learning is on all our day by day lives: 

− ChatGPT

− Google search

− Social media

− Images recognition

− Bank accounting

− Shopping

− Travels

− ...and much more 

What is Machine Learning?
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Machine learning models

No label 
for the 
data

Unsupervised

Labeled 
training 
data 

Supervised

Few labeled 
data
A lot of not 
labeled data

Semi-supervised

Reinforcement learning
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Artificial Intelligence workflow

Training/Validation/Test data set



Classification tasks
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Machine Learning in a nutshell

Data set:
x features, y target

Split the data in 
training, validation 
and test set

Algorithm and its 
parameter selections: 
what you need is to 
find a function which  
minimize an error cost 
function

Machine learning pipeline setup
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How good is our model?  

Binary Classification example

● Positive (P) : Observation is positive 
● Negative (N) : Observation is not positive 
● True Positive (TP) : Observation is positive, 

and is predicted to be positive.
● False Negative (FN) : Observation is positive, 

but is predicted negative.
● True Negative (TN) : Observation is negative, 

and is predicted to be negative.
● False Positive (FP) : Observation is negative, 

but is predicted positive.

Accuracy=# of correct prediction/ total # of 
prediction 

True Positive Rate

False Positive Rate
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Receiver Operating Characteristic
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https://scikit-learn.org/stable/index.html

A probability curve for binary 
classification



Confusion Matrix

Binary Classification ● Table to show how our model 
performs

● It summarize the 
(mis)classification of our 
predictions

● Easy to interpret
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Class A 
prediction

Class B 
prediction

Class A 
True value

TP FN

Class B 
True value

FP TN



Let’ s try to classify Iris flower different types

Step to do:

● Identify some features which characterize the flower

● Split the data set in training and test set

● Train classification algorithm on train set

● Verify result on test set

Machine learning by example: Iris classification
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One of the most difficult part in any 
Machine Learning  pipeline is the 
extraction of correct features which 
can help us in classify the data

Machine learning by example: Iris features
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Feature distribution
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● Decision Trees (DTs) are a 
non-parametric supervised learning 
method used for classification and 
regression.

● The goal is to create a model that 
predicts the value of a target 
variable by learning simple decision 
rules inferred from the data 
features.

The sinking of the Titanic: 
who will survive?

Example of classical ML algorithm

24



We were able to classify the flowers with
accuracy of 95%

Iris classification with Decision Tree
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Iris Classification with Decision Tree
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It is useful to  evaluate the quality of the output of a classifier on the iris data set. 
The diagonal elements represent the number of points for which the predicted label is equal to 
the true label, while off-diagonal elements are those that are mislabeled by the classifier.

Confusion Matrix
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Perceptron

∑  
 

 

 

y

Frank Rosenblatt (1958)

Neural Network

The algorithm find the weights w in order
To find the best y  which is similar to a 
Target function Y
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https://www.edureka.co/blog/what-is-deep-learning

Deep learning



We want to build a deep learning classifier able to 
Distinguish an image of dog from one of cat

● We need to preprocess the images

● Define the architecture of our NN

● Verify the prediction accuracy

Dataset available at https://www.kaggle.com

Cat versus dog
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Resize the images 64x64
From RGB to gray image

Image preparation and NN model
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What our net will predict on a test set?

Results
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http://www.asimovinstitute.org/neural-network-zoo

Neural network zoo
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http://www.asimovinstitute.org/neural-network-zoo


Examples of Machine learning 
applications to  GW
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Why Signal Classification?

▪ If we are able to classify the noise events, we can clean 
the data in a fast and clear way

▪ We can help commissioners
▪ We can identify glitch families
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Glitch 
classification

● Unsupervised classification

● Time-series (Wavelet) based 
classification

● Image based classification with 
Deep Learning

● Application on Simulated data
● Application on Real Data
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LIGO L1 and H1 triggers rates

How many trash events?
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Time Frequency images

The trash is our glitch zoo
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Gravitational wave signals
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● We need to extract the features 
which can characterize our 
signals

● The detection or detector 
characterization save events with 
some meta features: SNR, 
Frequency, duration, etc..

● We can use also different features 
to identify a signals

● We can use T-F plots too!

Signal features
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Wavelet based 
classification
● Time series as input data
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Unsupervised algorithm 

42https://scikit-learn.org

The main goal is to find
common pattern in the data
based on criteria which make
the elements of the data similar

The cluster are formed on a 
given metric related 
to the algorithm itself

Algorithm

D
at

a 
se

t
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Features selection and dimensionality reduction

● Cleaning features (too many 
missing values)

● Remove features that are 
correlated

● Keep the only features with high 
variance 

● Select a model and keep only 
features relevant to that model

Project features in a different space, 
where few component keep all the 
information

● Most used is Principal 
Component Analysis (PCA) 

https://scikit-learn.org



Wavelet Detection Filter and ML 

Features
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Unsupervised application
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Gaussian Mixture Model (GMM)

“A Gaussian mixture model is a probabilistic model that assumes all the data points 
are generated from a mixture of a finite number of Gaussian distributions with 
unknown parameters.”



aLIGO-like simulated noise with transient signals injected
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Simulated Signal



Reduced features projections after labeling

GMM clustering
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Classification methods for noise transients in advanced gravitational-wave detectors  

Class. Quant. Grav., 32 (21), pp. 215012, 2015

● PCAT:  PCA and ML  prediction
● PC-LIB:  PCA and Bayesian model prediction 
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Comparison: WDF-GMM, PCA and PC LIB



ER7  LIGO engineering run
● Data from the 7th aLIGO engineering run (ER7), which began on the 3rd of 

June 2015 and finished on the 14th of June 2015. The average binary neutron 
star inspiral range for both Hanford and Livingston detectors in data analysis 
mode during ER7 was 50-60 Mpc.

● The total length of Livingston data analysed is about 87 hours.
● The total length of Hanford data analysed is about 141 hours.
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Application on real data
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LIGO Hanford glitches



51

LIGO Livingston Glitches



 
Classification methods for noise transients in advanced gravitational-wave detectors II: performance tests on Advanced LIGO 
data Class. and Quant. Grav, 34 (3) 2017 

 
LIGO Livingston

Pipeline Correct 
classification

Missed triggers

PCAT 95% 90

PC-LIB 98% 33

WDF-ML 97% 0

LIGO Hanford
Pipeline Correct 

classification
Missed triggers

PCAT 99% 120

PC-LIB 95% 6

WDF-ML 92% 0

 We conclude that our methods have a high efficiency in real non-stationary and 
non-Gaussian detector noise
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Application on real data

How did we know correct classification??
JADE-Classifier



Supervised classification: Different approaches

▪ Images ▪ Time series

Image-based deep learning for classification of noise transients in gravitational wave detectors, 
Massimiliano Razzano, Elena Cuoco, Class.Quant.Grav. 35 (2018) no.9, 095016

Wavelet-based Classification of Transient Signals for Gravitational Wave Detectors, Elena Cuoco, 
Massimiliano Razzano and Andrei Utina, #1570436751 accepted reviewed paper at EUSIPCO2018
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To show the glitch time-series 
here we don’t show the noise 
contribution
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Data simulation: signal families and noise   

Razzano M., Cuoco E.  CQG-104381.R3

Waveform

Gaussian

Sine-Gaussian

Ring-Down

Chirp-like

Scattered-like

Whistle-like

NOISE (random)
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Signals in whitened data

Not Whitened

Whitened
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Supervised Classification: 
eXtreme Gradient Boosting

● https://github.com/dmlc/xgboost
●     Tianqi Chen and Carlos Guestrin. XGBoost: 

A Scalable Tree Boosting System. In 22nd 
SIGKDD Conference on Knowledge Discovery 
and Data Mining, 2016

●    XGBoost originates from research project at 
University of Washington, see also the 
Project Page at UW. Tree Ensemble

 

https://github.com/dmlc/xgboost
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Xgboost performance

Train/validation/test set: 70/15/15

task Classes Learning-rate Max_depth estimators

Binary 2 0.01 7 5000

Multi-label 7 0.01 10 6000

Data set Features: Wavelet coefficients

Cost function



WDFX Results: Multi-Label Classification

Overall accuracy 
>93%

Cuoco et al. 
10.23919/EUSIPCO.2018.8553393
2018 26th European Signal Processing 
Conference (EUSIPCO)
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https://doi.org/10.23919/EUSIPCO.2018.8553393
https://ieeexplore.ieee.org/xpl/conhome/8537458/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8537458/proceeding


WDFX: Binary Classification Results

Chirp-like signals
 OR
Noise

Overall accuracy 
>98%

Cuoco et al. 
10.23919/EUSIPCO.2018.8553393
2018 26th European Signal Processing 
Conference (EUSIPCO)
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https://doi.org/10.23919/EUSIPCO.2018.8553393
https://ieeexplore.ieee.org/xpl/conhome/8537458/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8537458/proceeding


Image-based 
classification

60

● Images as input data



Citizen science for GW-AI

Gravity Spy

• Team: M. Razzano, F. Di Renzo, F. Fidecaro 
(@Unipi), G. Hemming, S. Katsanevas (@EGO) 

• Launched @ Nov 2019 - REINFORCE Project 
     H2020-SWAFS (2019-2022)

https://www.zooniverse.org/projects/reinforce/gwitchhunters

http://www.gravityspy.org/
Citizen scientists contribute to 

classify glitches
 
More details in  Zevin+17  

10.1088/1361-6382/aa5cea

https://doi.org/10.1016/j.ins.2018.02.068 61

GWitchHunters

https://arxiv.org/ct?url=https://dx.doi.org/10.1088/1361-6382/aa5cea&v=e08367bb


Spectrogram for each image 

2-seconds time window to highlight 
features in long glitches

Data is whitened

Optional contrast stretch
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Building the images

Simulations now available  on FigShare
Razzano, Massimiliano; Cuoco, Elena (2018): Simulated image data for 
testing machine learning classification of noise transients in gravitational 
wave detectors (Razzano & Cuoco 2018). figshare. Collection. 
https://doi.org/10.6084/m9.figshare.c.4254017.v1

https://doi.org/10.6084/m9.figshare.c.4254017.v1


2-D CNN

Spectrogram images

63
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Alberto Iess courtesy

Deep learning: Convolutional Neural Network



Input GW data 
❖ Image processing
❖ Time series whitening
❖ Image creation from time series (FFT spectrograms)
❖ Image equalization & contrast enhancement

Classification
● A probability for each class, take the max
● Add a NOISE class to crosscheck glitch detection

Network layout
● Tested various networks, including a 4-block layers

Run on GPU Nvidia GeForce GTX 780 
● 2.8k cores, 3 Gb RAM) 
● Developed in Python + CUDA-optimized libraries
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Pipeline structure



We compared classification performances with simpler architectures

Linear Support Vector Machine

CNN with 1 hidden layer

CNN with one block
(2 CNNs+Pooling&Dropout)

Deep 4-blocks 
CNNs
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Classification Results

Razzano M., Cuoco E.  CQG-104381.R3



Normalized Confusion Matrix

Deep CNN

SVM

Deep CNN better at distinguishing 
similar morphologies
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Classification accuracy

Razzano M., Cuoco E.  CQG-104381.R3



Glitch name # in H1 # in L1

Air compressor 55 3

Blip 1495 374

Chirp 34 32

Extremely Loud 266 188

Helix 3 276

Koi fish 580 250

Light Modulation 568 5

Low_frequency_burst 184 473

Low_frequency_lines 82 371

No_Glitch 117 64

None_of_the_above 57 31

Paired doves 27 -

Power_line 274 179

Repeating blips 249 36

Scattered_light 393 66

Scratchy 95 259

Tomte 70 46

Violin_mode 179 -

Wandering_line 44 -

Whistle 2 303

Dataset from GravitySpy images

Real data: O1 run
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Elena Cuoco

Examples of classification



Full CNN stack

Consistent with 
Zevin+2017
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Results



GW Astrophysical signal classification
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Compact Binary Coalescences

Credit
LIGO/Caltech/MIT/Sonoma State (Aurore Simonnet)



Waveform 
depends on 
progenitor 

star

Different 
emission 

mechanisms 
(Proto-neutro

n star 
oscillation, 
Standing 
Accretion 

Shock 
Instability 
(SASI),..)Largely 

StochasticBest 
waveform 

models from 
computational

ly expensive 
3D 

simulations

Different 
simulation 

models

Rare (~100 
yrs in Milky 

Way)

Need an alternative to matched filter 
approach

Ott et al. (2017) 
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Core Collapse Supernovae
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Supernovae search

●  Some burst searches are for 
targeted sources like supernovae. 

● There is not enough supernova 
waveforms to match filter search 
but some supernova waveform 
features are known. 

● The known features from 
supernova simulations can be 
incorporated into supernova 
searches using machine learning.

J.  Powell courtesy
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Iess, Cuoco, Morawski, Powell, 
https://doi.org/10.1088/2632-2153/ab7d31

Andresen s11: Low amplitude, non-exploding, peak emission at lower frequencies

Radice s13: Non-exploding, lower amplitudes
 

Radice s25: Late explosion time, standing accretion shock instability (SASI), high 
peak frequency

Powell s18: High peak frequency, exploding model

Powell He3.5: ultra-stripped helium star, high peak frequency, exploding model

Core Collapse Supernova models

https://doi.org/10.1088/2632-2153/ab7d31


SINE GAUSSIAN & SCATTERED LIGHT GLITCHES

Distances: 
VO3 0.01 kpc to 10 kpc
ET 0.1 kpc to 1000 kpc 
Random sky localization

Large SNR range

Schutz (2011)

BACKGROUND STRAIN :  simulated data sampled at 4096 
Hz built from VO3 and ET projected sensitivities 

5/13
74

MDC and CCSN simulation



STRAIN WAVEFORMS

+ RESAMPLING, 
FILTERING

MACHINE-LEARNING 
CLASSIFIER

SIGNAL

GLITCH TYPE
TRAINING

WHITENING & TRIGGER 
GENERATION  

(WDF)

6/13
Alberto Iess courtesy

Pipeline Workflow
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ET, MERGED 1D & 2D CNN

Train on all  (4 CCSNe waveform models + 
glitches).

Test on all.

TRAINED 
CNN MODEL

Test 
samples

he3.5 Sine 
gauss.

s18 s11 s13 s25 Scatt. 
light

COMPLEX TASK LONGER TRAINING (> 1 hr)
76

Multilabel classification



44 segments 
(4096s per 
segment) 
from O2 

science run.

Added m39, 
y20, s18np 

models 
(Powell, 
Mueller 
2020).

Fixed 
distance of 1 

kpc. 

Added LSTM 
Networks, 
suited for 

time series 
data.

Added Three 
ITF 

classification
.

Powell and  Müller (2020)
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Test on real data



Noise PSD is non stationary.

Multiple Glitch Families.

SNR distribution is affected by ITF antenna pattern.

Dataset: ~15000 samples.

Imbalanced Dataset due to different model amplitudes.

CCSN Classification on Simulated and Real O2 Data with CNNs and LSTMs
A. Iess, E. Cuoco, F. Morawski, C. Nicolaou, O. Lahav, A&A 669, A42 (2023)  
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Real noise from O2 run



MULTILABEL CLASSIFICATION ON REAL O2 NOISE (SINGLE ITF, LIGO H1, DIFFERENT 
MODELS)

• Bi-LSTM, 2 recurrent layers
• ~10 ms/sample 
• Best weights over 100 epochs

• 1D-CNN, 4 convolutional layers
• ~2 ms/sample 
• Best weights over 20 epochs

• 2D-CNN, 4 convolutional layers
• ~3 ms/sample 
• Best weights over 20 epochs

A. Iess, E. Cuoco, F. Morawski, C. Nicolaou, O. Lahav, A&A 669, A42 (2023)  

24/05/2024ELENA CUOCO
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Multilabel classification task



Dataset breakdown: 675 noise, 329 s18p, 491 s18np, 
115 he3.5, 1940 m39, 1139 y20, 76 s13, 1557 s25.

Input to NNs have additional dimension (ITF) 

L1

H1

V1

A. Iess, E. Cuoco, F. Morawski, C. Nicolaou, O. Lahav, A&A 669, A42 (2023)  

24/05/2024
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Result merger on 3 ITFs



Jade Powell, Alberto Iess, Miquel Llorens-Monteagudo, Martin Obergaulinger, Bernhard 
Muller, Alejandro TorresFornè, Elena Cuoco, and Josè A. Font. Determining the 
core-collapse supernova explosion mechanism with current and future gravitational-wave 
observatories. 11 2023, 2311.18221, accepted for publication on PRD

ET LIG
O

NEMO

2D-CN
N
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Determining CCSN mechanism
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NOISE
• Data cleaning
• Glitch classification
• Nonlinear noise
• ITF anomaly detection
• Glitch simulation

BURST
• ML-based method for 

detection
• CCSN waveform 

classification

CBC
• Detection
• Early warning
• Anomaly detection

CW
• Clustering in the parameter 

space
• Computing efficiency

SWBG
• Noise correlation

PARAMETER 
ESTIMATION
• Faster and efficient methods

ALERT SYSTEM
• Ad hoc hardware/software 

solution?

E. Cuoco, M. Cavaglià, Ik. S. Heng, D. Keitel. C. 
Messenger,
Living Review in Relativity, submitted

Gravitational Wave science and AI



Thank you

twitter: @elenacuoco
elena.cuoco@ego-gw.it



Extra examples
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Anomaly Detection in 
Gravitational Waves data using 

Convolutional AutoEncoders 
for CBC signals

Filip Morawski, Michał Bejger, Elena Cuoco, Luigia Petre, https://doi.org/10.1088/2632-2153/abf3d0
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https://doi.org/10.1088/2632-2153/abf3d0


Example for detection/classification for CBC signals

Create a deep learning pipeline allowing detection of anomalies defined in 
terms of transient signals: gravitational waves as well as glitches.

Additionally: Consider reconstruction of the signal for the found 
anomalies.

Filip Morawski, Michał Bejger, Elena Cuoco, Luigia Petre, https://iopscience.iop.org/article/10.1088/2632-2153/abf3d0
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Filip Morawski, Michał Bejger, Elena Cuoco, Luigia Petre, https://iopscience.iop.org/article/10.1088/2632-2153/abf3d0
87

Auto-Encoder workflow



Model 
input

Model 
prediction
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Auto-encoder workflow



O2 data - MSE Distributions
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90Filip Morawski, Michał Bejger, Elena Cuoco, Luigia Petre, 
https://iopscience.iop.org/article/10.1088/2632-2153/abf3d0

GW150914


