Neutrino Physics (Theory) – 2 2024 BND school, Blankenberge, België

Richard Ruiz

Institute of Nuclear Physics – Polish Academy of Science (IFJ PAN)

2 September 2024

Lecture Plan (one-day show!)

Lecture I:

- Pt 1: The Standard Model (SM) neutrino
- Pt 2: The neutrino that nature gave us: intro to u oscillations

Coffee break at 10:30ish

Lecture II:

- Pt1. Consequences of neutrino masses (theory perspective)
- Pt2. Neutrino mass models (highlights)

Lunch at 12:30ish

• • = • • = •

Pt1. Consequences of neutrino masses

3 / 77

Ξ.

イロト イポト イヨト イヨト

The massless ν hypothesis (recap)

In quantum field theory: we learn about three types of fermions

 $\mathcal{L}_{\text{Kin.}} = \overline{\psi} i \, \partial \!\!\!/ \psi \qquad \mathcal{L}_{\text{Kin.}} = \overline{\psi} \left(i \, \partial \!\!\!/ - m \right) \psi \qquad \mathcal{L}_{\text{Kin.}} = \frac{1}{2} \overline{\psi} \left(i \, \partial \!\!\!/ - m \right) \psi$ Weyl fermion (m = 0) Dirac fermion $(m \neq 0)$ Majorana fermion $(m \neq 0)$

• SM hypothesizes 3 massless, chiral ν_L

(no evidence for $m_{\nu} \neq 0$)

- Data only say m_ν ≠ 0, but not whether
 ν is Dirac or Majorana
- The 1/2 Problem: cannot write $\mathcal{L}_{Kin.}$ without first knowing D vs M nature

 \implies existence of ν masses remain physics beyond the SM (215)

R. Ruiz (IFJ PAN

consider "The 1/2 Problem" from a different perspective

5 / 77

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

For fermions chirality and masses are linked

 $\begin{array}{l} \mbox{1 friendly reminder: $\overline{\psi}=\psi^\dagger\gamma^0$ and $P_L\gamma^0=\gamma^0P_R$}, \\ \mbox{we also have $P_LP_L\psi_L=P_L\psi_L=\psi_L$ (also true for R)}. \end{array}$

R. Ruiz (IFJ PAN

э

For fermions chirality and masses are linked

Example: consider the chiral projection operators¹ $P_L + P_R = 1$ $\implies \psi_L \equiv P_L \psi$ and $\psi_R \equiv P_R \psi$

¹ friendly reminder: $\overline{\psi} = \psi^{\dagger} \gamma^{0}$ and $P_{L} \gamma^{0} = \gamma^{0} P_{R}$. we also have $P_{L} P_{L} \psi_{L} = P_{L} \psi_{L} = \psi_{L}$ (also true for R).

R. Ruiz (IFJ PAN

For fermions chirality and masses are linked

Example: consider the chiral projection operators¹ $P_L + P_R = 1$ $\implies \psi_L \equiv P_L \psi$ and $\psi_R \equiv P_R \psi$

 $\mathcal{L} = m \ \overline{\psi} \ \psi$

¹ friendly reminder: $\overline{\psi} = \psi^{\dagger} \gamma^{0}$ and $P_{L} \gamma^{0} = \gamma^{0} P_{R}$. we also have $P_{I} P_{I} \psi_{I} = P_{I} \psi_{I} = \psi_{L}$ (also true for R).

R. Ruiz (IFJ PAN

For fermions chirality and masses are linked

Example: consider the **chiral projection operators**¹ $P_L + P_R = \mathbb{1}$ $\implies \psi_L \equiv P_L \psi$ and $\psi_R \equiv P_R \psi$

$$\mathcal{L} = m \,\overline{\psi} \,\psi = m \,\overline{\psi} \,(\psi_L + \psi_R)$$

¹ friendly reminder: $\overline{\psi} = \psi^{\dagger} \gamma^{0}$ and $P_{L} \gamma^{0} = \gamma^{0} P_{R}$. we also have $P_{I} P_{I} \psi_{I} = P_{L} \psi_{L} = \psi_{L}$ (also true for R).

R. Ruiz (IFJ PAN

For fermions chirality and masses are linked

Example: consider the **chiral projection operators**¹ $P_L + P_R = 1$ $\implies \psi_L \equiv P_L \psi$ and $\psi_R \equiv P_R \psi$

$$\mathcal{L} = m \,\overline{\psi} \,\psi = m \,\overline{\psi} \,(\psi_L + \psi_R) = m \,(\overline{\psi_L} + \overline{\psi_R}) \,(\psi_L + \psi_R)$$

¹ friendly reminder: $\overline{\psi} = \psi^{\dagger} \gamma^{0}$ and $P_{L} \gamma^{0} = \gamma^{0} P_{R}$. we also have $P_{I} P_{I} \psi_{I} = P_{I} \psi_{I} = \psi_{L}$ (also true for R).

For fermions chirality and masses are linked

Example: consider the **chiral projection operators**¹ $P_L + P_R = 1$ $\implies \psi_L \equiv P_L \psi$ and $\psi_R \equiv P_R \psi$

$$\mathcal{L} = m \,\overline{\psi} \,\psi = m \,\overline{\psi} \,(\psi_L + \psi_R) = m \,(\overline{\psi_L} + \overline{\psi_R}) \,(\psi_L + \psi_R)$$
$$= m \,(\overline{\psi_L} P_R + \overline{\psi_R} P_L) \,(P_L \psi_L + P_R \psi_R)$$

¹ friendly reminder: $\overline{\psi} = \psi^{\dagger} \gamma^{0}$ and $P_{L} \gamma^{0} = \gamma^{0} P_{R}$. we also have $P_{I} P_{I} \psi_{I} = P_{I} \psi_{I} = \psi_{L}$ (also true for R).

For fermions chirality and masses are linked

Example: consider the **chiral projection operators**¹ $P_L + P_R = 1$ $\implies \psi_L \equiv P_L \psi$ and $\psi_R \equiv P_R \psi$

$$\mathcal{L} = m \,\overline{\psi} \,\psi = m \,\overline{\psi} \,(\psi_L + \psi_R) = m \,(\overline{\psi_L} + \overline{\psi_R}) \,(\psi_L + \psi_R)$$
$$= m \,(\overline{\psi_L} P_R + \overline{\psi_R} P_L) \,(P_L \psi_L + P_R \psi_R) = m \,(\overline{\psi_L} \psi_R + \overline{\psi_R} \psi_L)$$

¹ friendly reminder: $\overline{\psi} = \psi^{\dagger} \gamma^{0}$ and $P_{L} \gamma^{0} = \gamma^{0} P_{R}$. we also have $P_{I} P_{I} \psi_{I} = P_{I} \psi_{I} = \psi_{L}$ (also true for R).

For fermions chirality and masses are linked

Example: consider the **chiral projection operators**¹ $P_L + P_R = 1$ $\implies \psi_L \equiv P_L \psi$ and $\psi_R \equiv P_R \psi$

$$\mathcal{L} = m \,\overline{\psi} \,\psi = m \,\overline{\psi} \,(\psi_L + \psi_R) = m \,(\overline{\psi_L} + \overline{\psi_R}) \,(\psi_L + \psi_R)$$

$$= m \left(\overline{\psi_L} P_R + \overline{\psi_R} P_L \right) \left(P_L \psi_L + P_R \psi_R \right) = m \left(\overline{\psi_L} \psi_R + \overline{\psi_R} \psi_L \right)$$

Conclusion: only (LR) and (RL) survive since $P_L \cdot P_R = P_R \cdot P_L = 0$

- if $\psi_R = (\psi_L)^c$, then ψ is a Majorana fermion
- if $\psi_R \neq (\psi_L)^c$, then ψ is a Dirac fermion

¹ friendly reminder: $\overline{\psi} = \psi^{\dagger} \gamma^{0}$ and $P_{L} \gamma^{0} = \gamma^{0} P_{R}$. we also have $P_{L} P_{L} \psi_{L} = P_{L} \psi_{L} = \psi_{L}$ (also true for R).

6 / 77

ヘロト 不通 とうき とうとう

For fermions chirality and masses are inherently linked

Example: consider the **chiral projection operators**² $P_L + P_R = 1$ $\implies \psi_L \equiv P_L \psi$ and $\psi_R \equiv P_R \psi$

$$\mathcal{L} = m \ \overline{\psi} \ \psi = m \ \overline{\psi} \ (\psi_L + \psi_R) = m \ (\overline{\psi_L} + \overline{\psi_R}) \ (\psi_L + \psi_R)$$
$$= m \ (\overline{\psi_L} P_R + \overline{\psi_R} P_L) \ (P_L \psi_L + P_R \psi_R) = m \ (\overline{\psi_L} \psi_R + \overline{\psi_R} \psi_L)$$

In SM: Higgs field (Φ_{SM}) couples LH and RH chiral fermions

• Yukawa couple opposite chirality, e.g., $\mathcal{L}_{Yuk.} = y_e^{ij} \overline{L_L^i} \Phi e_R^j + H.c.$

• Covariant derivatives couple same chirality, e.g., $\mathcal{L}_{\text{Kin.}} = \overline{L_L} i \not \! D L_L$

² friendly reminder: $\overline{\psi} = \psi^{\dagger} \gamma^{0}$ and $P_{L} \gamma^{0} = \gamma^{0} P_{R}$. we also have $P_{L} P_{L} \psi_{L} = P_{L} \psi_{L} = \psi_{L}$ (also true for R).

accommodating Dirac masses in the SM (1/2)

To generate Dirac masses for ν like other SM fermions, we need ν_R

 $\mathcal{L}_{\nu \text{ Yuk.}} = -y_{\nu} \overline{L} \tilde{\Phi} \nu_{R} + \text{H.c.}$

3

く 目 ト く ヨ ト く ヨ ト

To generate Dirac masses for ν like other SM fermions, we need ν_R

$$\mathcal{L}_{\nu \text{ Yuk.}} = -y_{\nu} \overline{L} \tilde{\Phi} \nu_{R} + \text{H.c.} = -y_{\nu} \left(\overline{\nu_{L}} \quad \overline{\ell_{L}} \right) \begin{pmatrix} \langle \Phi \rangle + h \\ 0 \end{pmatrix} \nu_{R} + \text{H.c.}$$

8 / 77

2

イロト イ団ト イヨト --

To generate Dirac masses for ν like other SM fermions, we need ν_R

$$\mathcal{L}_{\nu \text{ Yuk.}} = -y_{\nu} \overline{L} \tilde{\Phi} \nu_{R} + \text{H.c.} = -y_{\nu} \left(\overline{\nu_{L}} \quad \overline{\ell_{L}} \right) \begin{pmatrix} \langle \Phi \rangle + h \\ 0 \end{pmatrix} \nu_{R} + \text{H.c.}$$
$$= \underbrace{-y_{\nu} \langle \Phi \rangle}_{=m_{D}} \overline{\nu_{L}} \nu_{R} + \text{H.c.} + \dots$$

2

イロト イ団ト イヨト --

accommodating Dirac masses in the SM (2/2)

Adding ν_R 's to SM seems trivial but...

- ν_R 's are neutral under all SM gauge interactions (before and after EWSB)
- If ν_R 's are Majorana fermions, must include RH Majorana masses

$$\mathcal{L}_M = \frac{1}{2} \mu_R \overline{\nu_R^c} \nu_R + \text{H.c.}$$

• If ν_R 's are **Dirac fermions**, must **forbid** RH Majorana masses by imposing some new symmetry/conservation law

A (1) < A (1) < A (1) </p>

accommodating Dirac masses in the SM (2/2)

Adding ν_R 's to SM seems trivial but...

- ν_R 's are neutral under all SM gauge interactions (before and after EWSB)
- If ν_R 's are Majorana fermions, must include RH Majorana masses

$$\mathcal{L}_M = \frac{1}{2} \mu_R \overline{\nu_R^c} \nu_R + \text{H.c.}$$

• If ν_R 's are **Dirac fermions**, must **forbid** RH Majorana masses by imposing some new symmetry/conservation law

Adding ν_R 's to the SM means:

- a new scale μ_R that **breaks** lepton number symmetry
- a new symmetry that conserves lepton number symmetry
- both e.g., spontaneous B L breaking

However, the origin of $m_{\nu} \neq 0$ might not even involve ν_R

R. Ruiz (IFJ PAN

< ≣ ▶ < ≣ ▶ 9 / 77 to date, data gives no preference for Dirac or Majorana nature

< □ > < 同 > < 回 > < 回 > < 回 >

3

the SM does provide some theoretical guidance!

11 / 77

Ξ.

イロト イポト イヨト イヨト

 $m_{\nu} \neq 0 \implies$ new physics must exist

N)

<ロ > < 部 > < 言 > < 言 > ミ の Q (* 024 12 / 77

$m_{\nu} \neq 0 \implies$ new physics must exist

 $m_{\nu} \neq 0 + \text{left} - \text{handed (LH) weak currents}$ (renormalizability)LH Majorana mass : $\frac{1}{2}m_{\nu}^{L}\overline{\nu_{L}}\nu_{L}^{c}$ Dirac mass : $m_{\nu}^{D}\overline{\nu_{L}}\nu_{R}$ (gauge invariance) $m_{\nu}^{L} = y\langle\Delta\rangle$ or new dynamics $m_{\nu}^{D} = y\langle\Phi_{\text{SM}}\rangle$

R. Ruiz (IFJ PAN)

Phys 2 - BND24

12 / 77

<ロト < 四ト < 三ト < 三ト = 三

Ma('98) + others

$m_{\nu} \neq 0 \implies$ new physics must exist

 $m_{\nu} \neq 0 + \text{left} - \text{handed (LH) weak currents}$ (renormalizability) $LH \text{ Majorana mass} : \frac{1}{2}m_{\nu}^{L}\overline{\nu_{L}}\nu_{L}^{c}$ (gauge invariance) $m_{\nu}^{L} = y\langle\Delta\rangle \text{ or new dynamics}$ $m_{\nu}^{D} = y\langle\Phi_{\text{SM}}\rangle$

 $m_{\nu} \neq 0$ + renormalizability + gauge inv. \implies new particles

New particles must couple to Φ_{SM} and L, often inducing non-conservation of lepton number and/or lepton flavor

R. Ruiz (IFJ PAN)

< □ ▶ < 圖 ▶ < ≣ ▶ < ≣ ▶ 24 12 / 77

Ma('98) + others

friendly reminder of lepton symmetries

Lepton Number Violation (LNV) = (#leptons – #antileptons) not conserved

e.g, nuclear $0\nu\beta\beta$ decay of heavy isotopes $(A, Z) \rightarrow (A, Z+2) + e^-e^-$

friendly reminder of lepton symmetries

Lepton Number Violation (LNV) = (#leptons – #antileptons) not conserved

e.g, nuclear $0\nu\beta\beta$ decay of heavy isotopes $(A, Z) \rightarrow (A, Z+2) + e^-e^-$

Lepton Flavor Violation (LFV) = (#lepton species – #antilepton species) not conserved,

e.g, $e^- \rightarrow \tau^-$ conversion in deeply inelastic scattering (DIS)

lepton number and lepton flavor are accidentally conserved in the SM

R. Ruiz (IFJ PAN

Solution to $m_{\nu} \neq 0$ can be realized in *many* ways!

Minkowski ('77); Yanagida ('79); Glashow & Levy ('80); Gell-Mann et al., ('80); Mohapatra & Senjanović ('82); + many others

New particles must couple to Φ_{SM} and L, often inducing lepton number violation (LNV) and lepton flavor violation (LFV) in experiments

R. Ruiz (IFJ PAN

why the obsession with LNV?

R. Ruiz (IFJ PAN)

15 / 77

Ξ.

イロト イヨト イヨト イヨト

The Black Box Theorem

R. Ruiz (IFJ PAN)

16 / 77

Ξ.

イロト イヨト イヨト イヨト

In '82, Schechter & Valle published (PRD'82) a seminal finding:

- Suppose 0νββ is mediated within
 "a 'natural' gauge theory" a ΔL = −2 process →
- *u*, *d* and *e*⁻ all carry weak charges

FIG. 1. Diagrams for neutrinoless double- β decay in an SU(2)×U(1) gauge theory. The standard diagram is Fig. 1(a). It is the only one which contains a virtual neutrino (of four-momentum p). d and u are the down and up quarks.

In '82, Schechter & Valle published (PRD'82) a seminal finding:

- Suppose 0νββ is mediated within
 "a 'natural' gauge theory" a ΔL = −2 process →
- *u*, *d* and *e*⁻ all carry weak charges
- always possible to build a many-loop,
 2-point graph with external ν_L, ν^c_L
- $0\nu\beta\beta$ generates a Majorana mass for ν
- holds generally for other $\Delta L \neq 0$ process for further discussions, see:

Hirsch, et al [hep-ph/0608207] and Pascoli, et al [1712.07611]

FIG. 2. Diagram showing how any neutrinoless double- β decay process induces a $\bar{\nu}_e$ -to- ν_e transition, that is, an effective Majorana mass term.

(日)

R. Ruiz (IFJ PAN

LNV \iff Majorana nature of ν

R. Ruiz (IFJ PAN)

well, why not look for $0\nu\beta\beta$?

R. Ruiz (IFJ PAN)

20 / 77

3

<ロト < 四ト < 三ト < 三ト

... is it hard? 🙂

R. Ruiz (IFJ PAN)

 ν Phys 2 – BND24

\odot \odot \odot \odot

 ν Phys 2 – BND24

▲ロト▲母ト▲目ト▲目ト 目 のへの 22 / 77

quick review from this morning (1 slide)

The SM W^{\pm} boson coupling to **leptons** in the **flavor eigenbasis** is $\mathcal{L}_{CC} = -\frac{g}{\sqrt{2}} W^{+}_{\mu} \sum_{l=1}^{3} \left[\overline{\nu_{lL}} \gamma^{\mu} P_{L} l^{-} \right] + \text{H.c.}$

The SM W^{\pm} boson coupling to **leptons** in the **mass eigenbasis** is

$$\mathcal{L}_{CC} = -\frac{g}{\sqrt{2}} W^+_{\mu} \sum_{\ell=e}^{\tau} \sum_{m=1}^{3} \left[\overline{\nu_m} \underbrace{U^*_{m\ell}}_{U^*_{m\ell} \equiv \sum_{l} \Omega^*_{ml} \Omega_{l\ell}} \gamma^{\mu} P_L \ell^- \right] + \text{H.c.}$$

Like the CKM, SM Feynman rules are modified by PMNS mixing factor:
Consider the LNC process $\mathcal{NP} \rightarrow \mathcal{P}' \mathcal{N}' e^+ e^-$ as governed by the SM

The helicity amplitude for the LNC subprocess $q_1q_2 \rightarrow \ell_1^- \ell_2^+ q_1' q_2'$ is

$$\mathcal{M}_{LNC} = J^{\mu}_{q_1q'_1} J^{\nu}_{q_2q'_2} \Delta^W_{\mu\rho} \Delta^W_{\nu\sigma} T^{\rho\sigma}_{LNC} \mathcal{D}(p_N)$$

N)

Consider the LNC process $\mathcal{NP} \rightarrow \mathcal{P}' \mathcal{N}' e^+ e^-$ as governed by the SM

The helicity amplitude for the LNC subprocess $q_1q_2 \rightarrow \ell_1^- \ell_2^+ q_1' q_2'$ is

$$\mathcal{M}_{LNC} = J^{\mu}_{q_1q'_1} J^{\nu}_{q_2q'_2} \Delta^W_{\mu\rho} \Delta^W_{\nu\sigma} T^{\rho\sigma}_{LNC} \mathcal{D}(p_N)$$

$$T_{LNC}^{\rho\sigma} = \overline{u_L}(p_1) U_{ek} \gamma^{\rho} P_L \times (\underbrace{p_k}_{\text{LH helicity state}} + \underbrace{m_k}_{P_L m_k P_R = 0}) \times U_{ek} \gamma^{\sigma} P_L v_R(p_2)$$

Consider the LNC process $\mathcal{NP} \rightarrow \mathcal{P}' \mathcal{N}' e^+ e^-$ as governed by the SM

The helicity amplitude for the LNC subprocess $q_1q_2 \rightarrow \ell_1^- \ell_2^+ q_1' q_2'$ is

$$\mathcal{M}_{LNC} = J^{\mu}_{q_1q'_1} J^{\nu}_{q_2q'_2} \Delta^W_{\mu\rho} \Delta^W_{\nu\sigma} T^{\rho\sigma}_{LNC} \mathcal{D}(p_N)$$

$$T_{LNC}^{\rho\sigma} = \overline{u_L}(p_1) U_{ek} \gamma^{\rho} P_L \times (\underbrace{p_k}_{LH \text{ helicity state}} + \underbrace{m_k}_{P_L m_k P_R = 0}) \times U_{ek} \gamma^{\sigma} P_L v_R(p_2)$$
$$\implies \mathcal{M}_{LNC} \sim \frac{p_k}{(p_k^2 - m_k^2)} U_{ek}^2 \quad \text{scales with momentum transfer!}$$

R. Ruiz (IFJ PAN

The helicity amplitude for the LNV subprocess $q_1q_2 \rightarrow \ell_1^+ \ell_2^+ q_1' q_2'$ is

$$\mathcal{M}_{LNV} = J^{\mu}_{q_1q'_1} J^{\nu}_{q_2q'_2} \Delta^W_{\mu\rho} \Delta^W_{\nu\sigma} T^{\rho\sigma}_{LNV} \mathcal{D}(p_k)$$

R. Ruiz (IFJ PAN)

The helicity amplitude for the LNV subprocess $q_1q_2 \rightarrow \ell_1^+ \ell_2^+ q_1' q_2'$ is

$$\mathcal{M}_{LNV} = J^{\mu}_{q_1q'_1} J^{\nu}_{q_2q'_2} \Delta^W_{\mu\rho} \Delta^W_{\nu\sigma} T^{\rho\sigma}_{LNV} \mathcal{D}(p_k)$$

Intuition: CPT Theorem \implies CT-inversion = P-inversion

 $T_{LNV}^{\rho\sigma} = \overline{u_R}(p_1) U_{ek} \gamma^{\rho} \underbrace{P_R}_{P_R} \times (\underbrace{\not{p}_k}_{P_R P_R = 0} + \underbrace{m_k}_{RH \text{ helicity state}}) \times U_{ek} \gamma^{\sigma} P_L v_R(p_2)$

★御★ ★注★ ★注★ 二注

The helicity amplitude for the LNV subprocess $q_1q_2 \rightarrow \ell_1^+ \ell_2^+ q_1' q_2'$ is

$$\mathcal{M}_{LNV} = J^{\mu}_{q_1q'_1} J^{\nu}_{q_2q'_2} \Delta^W_{\mu\rho} \Delta^W_{\nu\sigma} T^{\rho\sigma}_{LNV} \mathcal{D}(p_k)$$

Intuition: CPT Theorem \implies CT-inversion = P-inversion

 $T_{LNV}^{\rho\sigma} = \overline{u_R}(p_1) U_{ek} \gamma^{\rho} \underbrace{P_R}_{P_R} \times (\underbrace{\not{p}_k}_{P_R P_R = 0} + \underbrace{m_k}_{RH \text{ helicity state}}) \times U_{ek} \gamma^{\sigma} P_L v_R(p_2)$

$$\implies \mathcal{M}_{LNV} \sim \frac{m_k}{(p_k^2 - m_k^2)} U_{ek}^2$$

R. Ruiz (IFJ PAN)

The helicity amplitude for the LNV subprocess $q_1q_2 \rightarrow \ell_1^+ \ell_2^+ q_1' q_2'$ is

$$\mathcal{M}_{LNV} = J^{\mu}_{q_1q'_1} J^{\nu}_{q_2q'_2} \Delta^W_{\mu\rho} \Delta^W_{\nu\sigma} T^{\rho\sigma}_{LNV} \mathcal{D}(p_k)$$

Intuition: CPT Theorem \implies CT-inversion = P-inversion

$$T_{LNV}^{\rho\sigma} = \overline{u_R}(p_1) U_{ek} \gamma^{\rho} \underbrace{P_R}_{P_R} \times (\underbrace{\not p_k}_{P_R P_R = 0} + \underbrace{m_k}_{RH \text{ helicity state}}) \times U_{ek} \gamma^{\sigma} P_L v_R(p_2)$$

$$\implies \mathcal{M}_{LNV} \sim \frac{m_k}{(\rho_k^2 - m_k^2)} \ U_{ek}^2 \approx \frac{m_k}{\rho_k^2} \ U_{ek}^2 \times \left[1 + \mathcal{O}\left(\frac{m_k^2}{\rho_k^2}\right) \right]$$

scales with mass!

gitlab.cern.ch/riruiz/public-projects/-/tree/master/NuPhysSandbox

R. Ruiz (IFJ PAN

26 / 77

3

gitlab.cern.ch/riruiz/public-projects/-/tree/master/NuPhysSandbox

R. Ruiz (IFJ PAN

26 / 77

э

Important: sensitivity is model dependent!!!

R. Ruiz (IFJ PAN

★ E ► 4 E ► E 26 / 77

how about looking for LNV elsewhere?

R. Ruiz (IFJ PAN)

28 / 77

Ξ.

イロン イ理 とく ヨン イ ヨン

The Dirac-Majorana Confusion Theorem

R. Ruiz (IFJ PAN)

29 / 77

Ξ.

イロン イ理 とく ヨン イ ヨン

refined later by Mohapatra & Pal ('98)

 f_2 W^{+*}

 ν Phys 2 – BND24

30 / 77

∃ >

→ < Ξ →</p>

refined later by Mohapatra & Pal ('98)

The helicity amplitude for the LNC process $W^+ \rightarrow \ell_1^+ \ell_2^- f \overline{f'}$ is

 $\mathcal{M}_{LNC} = \varepsilon_{\mu} T^{\rho\mu}_{LNC} \Delta^{W}_{\nu\rho} J^{\nu}_{f_{1}f_{2}} \mathcal{D}(p_{\nu})$

refined later by Mohapatra & Pal ('98)

The helicity amplitude for the LNC process $W^+ \rightarrow \ell_1^+ \ell_2^- f \overline{f'}$ is

$$\mathcal{M}_{LNC} = \varepsilon_{\mu} T^{\rho\mu}_{LNC} \Delta^{W}_{\nu\rho} J^{\nu}_{f_{1}f_{2}} \mathcal{D}(\rho_{\nu})$$

Intuition: successive LH chiral interactions \implies LH helicity eigenstate

30 / 77

• < = • < = •

refined later by Mohapatra & Pal ('98)

The helicity amplitude for the LNC process $W^+ \rightarrow \ell_1^+ \ell_2^- f \overline{f'}$ is

$$\mathcal{M}_{LNC} = \varepsilon_{\mu} T^{\rho\mu}_{LNC} \Delta^{W}_{\nu\rho} J^{\nu}_{f_{1}f_{2}} \mathcal{D}(p_{\nu})$$

Intuition: successive LH chiral interactions \implies LH helicity eigenstate

$$T_{LNC}^{\rho\mu} = \overline{u_L}(p_2)\gamma^{\rho}P_L \times (\underbrace{p_{\nu}}_{\text{LH helicity state}} + \underbrace{m_{\nu}}_{P_L m_{\nu}P_R = 0}) \times \gamma^{\mu}P_L v_R(p_1)$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

refined later by Mohapatra & Pal ('98)

The helicity amplitude for the LNC process $W^+ \rightarrow \ell_1^+ \ell_2^- f \overline{f'}$ is

$$\mathcal{M}_{LNC} = \varepsilon_{\mu} T^{\rho\mu}_{LNC} \Delta^{W}_{\nu\rho} J^{\nu}_{f_{1}f_{2}} \mathcal{D}(p_{\nu})$$

Intuition: successive LH chiral interactions \implies LH helicity eigenstate

$$T_{LNC}^{\rho\mu} = \overline{u_L}(p_2)\gamma^{\rho}P_L \times (\underbrace{p_{\nu}}_{\text{LH helicity state}} + \underbrace{m_{\nu}}_{P_L m_{\nu} P_R = 0}) \times \gamma^{\mu}P_L v_R(p_1)$$
$$\implies \mathcal{M}_{LNC} \sim \frac{p_{\nu}}{p_{\nu}^2 - m_{\nu}^2}$$

R. Ruiz (IFJ PAN)

30 / 77

・ 何 ト ・ ヨ ト ・ ヨ ト

31 / 77

э

< □ > < 同 > < 回 > < 回 > < 回 >

R. Ruiz (IFJ PAN

 $\mathcal{M}_{LNV} = \varepsilon_{\mu} T^{\rho\mu}_{LNV} \Delta^{W}_{\nu\rho} J^{\nu}_{f_{2}f_{1}} \mathcal{D}(p_{\nu})$

DND04

(4) (日本)

R. Ruiz (IFJ PAN)

 $\mathcal{M}_{LNV} = \varepsilon_{\mu} T^{\rho\mu}_{LNV} \Delta^{W}_{\nu\rho} J^{\nu}_{f_{2}f_{1}} \mathcal{D}(p_{\nu})$

Intuition: CPT Theorem \implies C-inversion = PT-inversion

 $\mathcal{M}_{LNV} = \varepsilon_{\mu} T^{\rho\mu}_{LNV} \Delta^{W}_{\nu\rho} J^{\nu}_{f_{2}f_{1}} \mathcal{D}(p_{\nu})$

Intuition: CPT Theorem \implies *C*-inversion = *PT*-inversion $T_{LNV}^{\rho\mu} = \overline{u_R}(p_2)\gamma^{\rho} \underbrace{P_R}_{CPT: P_L \to P_R} \times (\underbrace{p_{\nu}}_{P_R=0} + \underbrace{m_{\nu}}_{RH \text{ helicity state}}) \times \gamma^{\mu}P_L v_R(p_j)$

31 / 77

- 本間 と く ヨ と く ヨ と 二 ヨ

 $\mathcal{M}_{LNV} = \varepsilon_{\mu} T^{\rho\mu}_{LNV} \Delta^{W}_{\nu\rho} J^{\nu}_{f_{2}f_{1}} \mathcal{D}(\rho_{\nu})$

Intuition: CPT Theorem \implies C-inversion = PT-inversion $T_{LNV}^{\rho\mu} = \overline{u_R}(p_2)\gamma^{\rho} \underbrace{P_R}_{CPT: P_L \to P_R} \times (\underbrace{p_{\nu}}_{P_R \not p_{\nu}} + \underbrace{m_{\nu}}_{P_R=0}) \times \gamma^{\mu}P_L v_R(p_j)$ $\implies \mathcal{M}_{LNV} \sim \frac{m_{\nu}}{p_{\nu}^2 - m_{\nu}}$

R. Ruiz (IFJ PAN)

31 / 77

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $\mathcal{M}_{LNV} = \varepsilon_{\mu} T^{\rho\mu}_{LNV} \Delta^{W}_{\nu\rho} J^{\nu}_{f_{2}f_{1}} \mathcal{D}(p_{\nu})$

Intuition: CPT Theorem \implies *C*-inversion = *PT*-inversion $T_{LNV}^{\rho\mu} = \overline{u_R}(p_2)\gamma^{\rho} \underbrace{P_R}_{CPT: P_L \to P_R} \times (\underbrace{p_{\nu}}_{P_R p_{\nu}} + \underbrace{m_{\nu}}_{P_R=0}) \times \gamma^{\mu}P_L v_R(p_j)$ $\implies \mathcal{M}_{LNV} \sim \frac{m_{\nu}}{p_{\nu}^2 - m_{\nu}}$

Confusion Theorem: In SM + Majorana ν , the rate of LNV~ $\mathcal{O}(m_{\nu})$; in the limit where $(m_{\nu}^2/M_W^2) \rightarrow 0$, Dirac behavior recovered

R. Ruiz (IFJ PAN)

31 / 77

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

$$\mathcal{M}_{LNV} = \varepsilon_{\mu} T^{\rho\mu}_{LNV} \Delta^{W}_{\nu\rho} J^{\nu}_{f_{2}f_{1}} \mathcal{D}(p_{\nu})$$

Intuition: CPT Theorem \implies C-inversion = PT-inversion $T_{LNV}^{\rho\mu} = \overline{u_R}(p_2)\gamma^{\rho} \underbrace{P_R}_{CPT: P_L \to P_R} \times (\underbrace{p_{\nu}}_{P_R \not p_{\nu}} + \underbrace{m_{\nu}}_{P_R=0}) \times \gamma^{\mu}P_L v_R(p_j)$

$$\implies \mathcal{M}_{LNV} \sim \frac{m_{\nu}}{p_{\nu}^2 - m}$$

Confusion Theorem: In SM + Majorana ν , the rate of LNV~ $\mathcal{O}(m_{\nu})$; in the limit where $(m_{\nu}^2/M_W^2) \rightarrow 0$, Dirac behavior recovered

holds for other gauge theories with Majorana fermions Han, RR, et al [1211.6447]; RR [2008.01092]

R. Ruiz (IFJ PAN)

Pt2. ν mass models

R. Ruiz (IFJ PAN)

32 / 77

・ロト・日本・日本・日本・ 日本・ うくぐ

³Konetschny and Kummer ('77); Schechter and Valle ('80); Cheng and Li ('80); Lazarides, et al ('81); Mohapatra and Senjanovic ('81)

R. Ruiz (IFJ PAN

R. Ruiz (IFJ PAN)

< □ ▶ < 클 ▶ < 클 ▶ < 클 ▶ Ξ のへで 024 34 / 77

Hypothesize a scalar SU(2)_L triplet with lepton number L = -2

$$\hat{\Delta} = \frac{1}{\sqrt{2}} \begin{pmatrix} \Delta^+ & \sqrt{2} \Delta^{++} \\ \sqrt{2} \Delta^0 & -\Delta^+ \end{pmatrix}, \quad \text{with} \quad \mathcal{L}_{\Delta \Phi} \ni \mu_{h\Delta} \left(\Phi_{\text{SM}}^{\dagger} \hat{\Delta} \cdot \Phi_{\text{SM}}^{\dagger} + \text{H.c.} \right)$$

. Ruiz (IFJ PAN)

< □ ▶ < 클 ▶ < 클 ▶ < 클 ▶ Ξ のへで 024 34 / 77

Hypothesize a scalar SU(2)_L triplet with lepton number L = -2

$$\hat{\Delta} = \frac{1}{\sqrt{2}} \begin{pmatrix} \Delta^{+} & \sqrt{2} \Delta^{++} \\ \sqrt{2} \Delta^{0} & -\Delta^{+} \end{pmatrix}, \quad \text{with} \quad \mathcal{L}_{\Delta \Phi} \ni \mu_{h\Delta} \left(\Phi_{\mathrm{SM}}^{\dagger} \hat{\Delta} \cdot \Phi_{\mathrm{SM}}^{\dagger} + \text{H.c.} \right)$$

The mass scale $\mu_{h\Delta}$ breaks lepton number, and induces $\langle \Delta \rangle \neq 0$:

$$\left\langle \hat{\Delta} \right\rangle = \mathbf{v}_{\Delta} \approx \frac{\mu_{h\Delta} v_{\rm EW}^2}{\sqrt{2}m_{\Delta}^2}$$

Hypothesize a scalar SU(2)_L triplet with lepton number L = -2

$$\hat{\Delta} = \frac{1}{\sqrt{2}} \begin{pmatrix} \Delta^+ & \sqrt{2} \Delta^{++} \\ \sqrt{2} \Delta^0 & -\Delta^+ \end{pmatrix}, \quad \text{with} \quad \mathcal{L}_{\Delta \Phi} \ni \mu_{h\Delta} \Big(\Phi_{\text{SM}}^{\dagger} \hat{\Delta} \cdot \Phi_{\text{SM}}^{\dagger} + \text{H.c.} \Big)$$

The mass scale $\mu_{h\Delta}$ breaks lepton number, and induces $\langle \Delta \rangle \neq 0$:

$$\left\langle \hat{\Delta} \right\rangle = \mathbf{v}_{\Delta} \approx \frac{\mu_{h\Delta} v_{\rm EW}^2}{\sqrt{2}m_{\Delta}^2}$$

 \implies left-handed Majorana masses for ν

$$\Delta \mathcal{L} = -\frac{y_{\Delta}^{ij}}{\sqrt{2}} \overline{L^c} \hat{\Delta} L = -\frac{y_{\Delta}^{ij}}{\sqrt{2}} (\overline{\nu^{jc}} \quad \overline{\ell^{jc}}) \begin{pmatrix} 0 & 0 \\ v_{\Delta} & 0 \end{pmatrix} \begin{pmatrix} \nu^i \\ \ell^i \end{pmatrix}$$
$$= -\frac{1}{2} (\sqrt{2} y_{\Delta}^{ij} v_{\Delta}) \overline{\nu^{jc}} \nu^i$$
$$= m_{\nu}^{ij}$$

R. Ruiz (IFJ PAN

< □ ▶ < @ ▶ < ≣ ▶ < ≣ ▶ E の Q @ 24 34 / 77

Fewer free parameters \implies richer experimental predictions

Fileviez Perez, Han, Li, et al, [0805.3536], Crivellin, et al [1807.10224], Fuks, Nemevšek, RR [1912.08975] + others

 Example: △ decay rates encode inverse (IH) vs normal (NH) ordering of light neutrino masses

$$\Gamma(\Delta^{\pm\pm} \to \ell_i^{\pm}\ell_j^{\pm}) \sim y_\Delta^{ij} \sim (U_{\rm PMNS}^* \tilde{m}_\nu^{\rm diag} U_{\rm PMNS}^\dagger)_{ij}$$

R. Ruiz (IFJ PAN

R. Ruiz (IFJ PAN)

Fuks, Nemevšek, RR [1912.08975]

R. Ruiz (IFJ PAN

R. Ruiz (IFJ PAN)

LHC limits on pair production

$$pp \rightarrow \Delta^{++}\Delta^{--} \rightarrow 4W^{\pm} \rightarrow 2 - 4\ell^{\pm} + /E_T + X \qquad (\ell = e, \mu) \text{ [2101.11961]}$$

38 / 77

< ⊒ >
LHC limits on pair production

$$pp \rightarrow \Delta^{++}\Delta^{--} \rightarrow 4\ell^{\pm} + X \quad (\ell = e, \mu) \text{ [2211.07505]}$$

39 / 77

R. Ruiz (IFJ PAN

What if $\Delta^{\pm\pm}$, Δ^{\pm} are discovered?

R. Ruiz (IFJ PAN)

celebrate! 🙂

R. Ruiz (IFJ PAN)

 ν Phys 2 – BND24

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

except... 🙂

R. Ruiz (IFJ PAN

 $\Delta^{\pm\pm},\ \Delta^{\pm}$ are not unique in new physics models

44 / 77

3

イロト イヨト イヨト イヨト

Zee-Babu model generates m_{ν} radiatively **without** hypothesizing ν_R

45 / 77

イロト イヨト イヨト -

Ξ.

Zee-Babu model generates m_{ν} radiatively **without** hypothesizing ν_R

Hypothesize two scalar SU(2)_L singlets k, h with weak hypercharge Y = -2, -1 ($\implies Q_k = -2, Q_h = -1$) with lepton number L = -2

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Zee-Babu model generates m_{ν} radiatively **without** hypothesizing ν_R

Hypothesize two scalar SU(2)_L singlets k, h with weak hypercharge Y = -2, -1 ($\implies Q_k = -2, Q_h = -1$) with lepton number L = -2

$$\mathcal{L}_{\text{ZB}} = \mathcal{L}_{\text{SM}} + (D_{\mu}k)^{\dagger}(D^{\mu}k) + (D_{\mu}h)^{\dagger}(D^{\mu}h) + (\mu_{\not l} hhk^{\dagger} + \text{H.c.})$$

$$\begin{bmatrix} f_{ij} \ \overline{\tilde{L}^{i}}L^{j}h^{\dagger} + g_{ij} \ \overline{(e_{R}^{c})^{i}}e_{R}{}^{j}k^{\dagger} + \text{H.c.} \end{bmatrix} + \dots$$

The mass scale $\mu_{\not\!l}$ breaks lepton number, and induces $m_{\nu} \neq 0$: $\left(\mathcal{M}_{\nu}^{\text{flavor}}\right)_{ij} = 16\mu_{\not\!l} f_{ia} m_a g_{ab}^* \mathcal{I}_{ab}(r) m_b f_{jb}.$

R. Ruiz (IFJ PAN

Few free parameters \implies ric experimental predictions

Nebot, et al [0711.0483]; Ohlsson, Schwetz, Zhang [0909.0455]; Herrero-Garcia, Nebot, Rius, et al [1402.4491]; + others

• E.g., $k^{\pm\pm}$, h^{\pm} couplings to leptons encode oscillation physics Normal ordering:

$$\frac{f_{e\tau}}{f_{\mu\tau}} = \tan\theta_{12}\frac{\cos\theta_{23}}{\cos\theta_{13}} + \tan\theta_{13}\sin\theta_{23}e^{-i\delta}$$
$$\frac{f_{e\mu}}{f_{\mu\tau}} = \tan\theta_{12}\frac{\cos\theta_{23}}{\cos\theta_{13}} - \tan\theta_{13}\sin\theta_{23}e^{-i\delta}$$

Few free parameters \implies ric experimental predictions

Nebot, et al [0711.0483]; Ohlsson, Schwetz, Zhang [0909.0455]; Herrero-Garcia, Nebot, Rius, et al [1402.4491]; + others

• E.g., $k^{\pm\pm}$, h^{\pm} couplings to leptons encode oscillation physics Normal ordering:

$$\begin{aligned} \frac{f_{e\tau}}{f_{\mu\tau}} &= \tan\theta_{12}\frac{\cos\theta_{23}}{\cos\theta_{13}} + \tan\theta_{13}\sin\theta_{23}e^{-i\delta}\\ \frac{f_{e\mu}}{f_{\mu\tau}} &= \tan\theta_{12}\frac{\cos\theta_{23}}{\cos\theta_{13}} - \tan\theta_{13}\sin\theta_{23}e^{-i\delta} \end{aligned}$$

Inverse ordering:

$$\frac{f_{e\tau}}{f_{\mu\tau}} = -\frac{\sin\theta_{23}}{\tan\theta_{13}}e^{-i\delta},$$
$$\frac{f_{e\mu}}{f_{\mu\tau}} = \frac{\cos\theta_{23}}{\tan\theta_{13}}e^{-i\delta},$$
$$\frac{f_{e\tau}}{f_{e\mu}} = -\tan\theta_{23}.$$

R. Ruiz (IFJ PAN

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Few free parameters \implies ric experimental predictions

Nebot, et al [0711.0483]; Ohlsson, Schwetz, Zhang [0909.0455]; Herrero-Garcia, Nebot, Rius, et al [1402.4491]; + others

• E.g., $k^{\pm\pm}$, h^{\pm} decay rates encode IH vs NO

. Ruiz (IFJ PAN)

47 / 77

э

- 4 回 ト 4 三 ト 4 三 ト

 $k^{\pm\pm}$, h^{\pm} couple directly to Z, γ via gauge couplings (\implies unambiguous xsec prediction!)

Many production channels but most studies focus on $pp \rightarrow k^{++}k^{--}$

If $k^{\pm\pm}$ is the lightest state, then decay rates set by oscillation parameters

(I find this really, really cool \odot)

Discerning from Type II Seesaw is actually difficult

RR [2206.14833]

 $k^{\pm\pm}$, h^{\pm} couple directly to Z, γ via gauge couplings (\implies unambiguous xsec prediction!)

Guidance from oscillation data

The ratios of $h^{\pm} \rightarrow \ell \nu$ couplings are fixed by oscillation data

- ν cannot be tagged at the LHC
- LHC only sensitive to sum over $\nu \implies$ inclusive w.r.t. ν

From flavor-exclusive decay rates: $\Gamma(h^{\pm} \to \ell \nu_{\ell}') = \frac{|f_{\ell \ell'}|^2}{4\pi} m_h \left(1 - \frac{m_{\ell}^2}{m_h^2}\right)$

define flavor-inclusive decay rates:

$$\Gamma(h^{\pm} \to e^{\pm} \nu_X) = \sum_{\ell=e}^{\tau} \Gamma(h^{\pm} \to e^{\pm} \nu_{\ell})$$

$$\Gamma(h^{\pm} \to \mu^{\pm} \nu_X) = \sum_{\ell=e}^{\tau} \Gamma(h^{\pm} \to \mu^{\pm} \nu_{\ell})$$

R. Ruiz (IFJ PAN)

▶ ◀ Ē ▶ ◀ Ē ▶ 50 / 77

Guidance from oscillation data

The ratios of $h^{\pm} \rightarrow \ell \nu$ couplings are fixed by oscillation data

- u cannot be tagged at the LHC
- LHC only sensitive to sum over $u \implies$ inclusive w.r.t. u

From flavor-exclusive decay rates: $\Gamma(h^{\pm} \to \ell \nu_{\ell}') = \frac{|f_{\ell \ell'}|^2}{4\pi} m_h \left(1 - \frac{m_{\ell}^2}{m_h^2}\right)$

$$\begin{aligned} \mathcal{R}^{h}_{e\mu} &= \frac{\mathrm{BR}(h^{\pm} \to e^{\pm}\nu_{X})}{\mathrm{BR}(h^{\pm} \to \mu^{\pm}\nu_{X})} \\ &= \frac{|f_{e\mu}|^{2} + |f_{e\tau}|^{2}}{|f_{e\mu}|^{2} + |f_{\mu\tau}|^{2}} = \frac{|\frac{f_{e\mu}}{f_{\mu\tau}}|^{2} + |\frac{f_{e\tau}}{f_{\mu\tau}}|^{2}}{|\frac{f_{e\mu}}{f_{\mu\tau}}|^{2} + 1} \end{aligned}$$

define flavor-inclusive decay rates: $\Gamma(h^{\pm} \to e^{\pm}\nu_X) = \sum_{\ell=e}^{\tau} \Gamma(h^{\pm} \to e^{\pm}\nu_\ell)$ $\Gamma(h^{\pm} \to \mu^{\pm}\nu_X) = \sum_{\ell=e}^{\tau} \Gamma(h^{\pm} \to \mu^{\pm}\nu_\ell)$ Using NuFit(v5.1) $\mathcal{R}_{e\mu}^h \Big|_{NO} \approx 0.313^{+55\%}_{-20\%} \text{ at } 3\sigma$ $\mathcal{R}_{e\mu}^h \Big|_{NO} \approx 0.715^{+3\%}_{-11\%} \text{ at } 3\sigma$

R. Ruiz (IFJ PAN)

LHC limits on pair production

$$pp \rightarrow \Delta^{++}\Delta^{--} \rightarrow 4\ell^{\pm} + X \quad (\ell = e, \mu) \text{ [2211.07505]}$$

51 / 77

→ ∃ →

R. Ruiz (IFJ PAN

right-handed neutrinos⁵

R. Ruiz (IFJ PAN)

52 / 77

<ロト < 四ト < 三ト < 三ト = 三

 $^{^{5}\}ensuremath{\mathsf{For}}$ reviews at colliders, see Cai, Han, Li, RR [1711.02180] and Pascoli, RR, Weiland [1812.08750]

1 slide for non-experts

53 / 77

Ξ.

To generate Dirac masses for ν like other SM fermions, we need ν_R

$$\mathcal{L}_{\nu \text{ Yuk.}} = -y_{\nu} \overline{L} \tilde{\Phi} \nu_{R} + H.c. = -y_{\nu} \left(\overline{\nu_{L}} \quad \overline{\ell_{L}} \right) \begin{pmatrix} \langle \Phi \rangle + h \\ 0 \end{pmatrix} \nu_{R} + H.c.$$
$$= \underbrace{-y_{\nu} \langle \Phi \rangle}_{\overline{\nu_{L}}} \overline{\nu_{L}} \nu_{R} + H.c. + \dots$$

54 / 77

イロト イ団ト イヨト イヨト

Ξ.

To generate Dirac masses for ν like other SM fermions, we need ν_R

$$\mathcal{L}_{\nu \text{ Yuk.}} = -y_{\nu} \overline{L} \tilde{\Phi} \nu_{R} + H.c. = -y_{\nu} \left(\overline{\nu_{L}} \quad \overline{\ell_{L}} \right) \begin{pmatrix} \langle \Phi \rangle + h \\ 0 \end{pmatrix} \nu_{R} + H.c.$$
$$= \underbrace{-y_{\nu} \langle \Phi \rangle}_{=m_{D}} \overline{\nu_{L}} \nu_{R} + H.c. + \dots$$

 ν_R do not exist in the SM, so **hypothesize** that they do and $\nu_R = \nu_R^c$:

$$\implies \mathcal{L}_{\text{mass}} = \frac{-1}{2} \underbrace{\left(\overline{\nu_L} \quad \overline{\nu_R^c} \right)}_{\text{chiral state}} \underbrace{\left(\begin{matrix} 0 & m_D \\ m_D & \mu_L \end{matrix} \right)}_{\text{mass matrix (chiral basis)}} \begin{pmatrix} \nu_L \\ \nu_R^c \end{pmatrix}$$

R. Ruiz (IFJ PAN)

54 / 77

3

ヘロト ヘヨト ヘヨト

To generate Dirac masses for ν like other SM fermions, we need ν_R

$$\mathcal{L}_{\nu \text{ Yuk.}} = -y_{\nu} \overline{L} \tilde{\Phi} \nu_{R} + H.c. = -y_{\nu} \left(\overline{\nu_{L}} \quad \overline{\ell_{L}} \right) \begin{pmatrix} \langle \Phi \rangle + h \\ 0 \end{pmatrix} \nu_{R} + H.c.$$
$$= \underbrace{-y_{\nu} \langle \Phi \rangle}_{=m_{D}} \overline{\nu_{L}} \nu_{R} + H.c. + \dots$$

 ν_R do not exist in the SM, so **hypothesize** that they do and $\nu_R = \nu_R^c$:

$$\implies \mathcal{L}_{\text{mass}} = \frac{-1}{2} \underbrace{\left(\overline{\nu_{L}} \quad \overline{\nu_{R}^{c}} \right)}_{\text{chiral state}} \underbrace{\left(\begin{matrix} 0 & m_{D} \\ m_{D} & \mu_{L} \end{matrix} \right)}_{\text{mass matrix (chiral basis)}} \begin{pmatrix} \nu_{L} \\ \nu_{R}^{c} \end{pmatrix}$$

After diagonalizing the mass matrix, identify ν_L (chiral eigenstate) in the SM as a linear combination of mass eigenstates:

$$\frac{|\nu_L\rangle}{|\nu_L\rangle} = \cos\theta \frac{|\nu\rangle}{|\nu_L\rangle} + \frac{\sin\theta \frac{|N\rangle}{|N\rangle}}{\sin\theta \frac{|N\rangle}{|N\rangle}}$$
chiral state light mass state heavy mass state (this is a prediction!)

technical comments on high- and low-scale Seesaws (for experts)

55 / 77

イロト イヨト イヨト イヨト

3

In pure Type I scenarios (SM+ ν_R), tiny m_{ν} obtained in two ways:

greatly clarified by Pascoli, et al, [1712.07611]

0

High-scale seesaw:

$$\Lambda_{LNV} \gg y_{\nu} \langle \Phi_{SM} \rangle \implies m_{\nu} \sim m_D \left(\frac{m_D}{\Lambda_{LNV}} \right), \quad m_N \sim \Lambda_{LNV}$$

Generically leads to decoupling of N and LNV from colliders

2 Low-scale seesaw:

$$\Lambda_{LNV} \ll y_{\nu} \langle \Phi_{SM} \rangle \implies m_{\nu} \sim \Lambda_{LNV} \left(\frac{m_D}{m_R} \right)^2, \ m_N \sim m_R$$

Known also in literature as Inverse Seesaw, Linear Seesaw, Protective Symmetries, etc.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

In pure Type I scenarios $(SM + \nu_R)$, tiny m_{ν} obtained in two ways:

greatly clarified by Pascoli, et al, [1712.07611]

0

High-scale seesaw:

$$\Lambda_{LNV} \gg y_{\nu} \langle \Phi_{SM} \rangle \implies m_{\nu} \sim m_D \left(\frac{m_D}{\Lambda_{LNV}} \right), \quad m_N \sim \Lambda_{LNV}$$

Generically leads to decoupling of N and LNV from colliders

Low-scale seesaw:

$$\Lambda_{LNV} \ll y_{\nu} \langle \Phi_{SM} \rangle \implies m_{\nu} \sim \Lambda_{LNV} \left(\frac{m_D}{m_R} \right)^2, \ m_N \sim m_R$$

Known also in literature as Inverse Seesaw, Linear Seesaw, Protective Symmetries, etc.

No obvious preference without additional theory input/prejudice

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

In pure Type I scenarios $(SM + \nu_R)$, tiny m_{ν} obtained in two ways:

greatly clarified by Pascoli, et al, [1712.07611]

High-scale seesaw:

 $\Lambda_{LNV} \gg y_{\nu} \langle \Phi_{SM} \rangle \implies m_{\nu} \sim m_D \left(\frac{m_D}{\Lambda_{LNV}} \right), \quad m_N \sim \Lambda_{LNV}$

Generically leads to decoupling of N and LNV from colliders

(a) Low-scale seesaw: $\Lambda_{LNV} \ll y_{\nu} \langle \Phi_{SM} \rangle \implies m_{\nu} \sim \Lambda_{LNV} \left(\frac{m_D}{m_R} \right)^2, \quad m_N \sim m_R$

Known also in literature as Inverse Seesaw, Linear Seesaw, Protective Symmetries, etc.

No obvious preference without additional theory input/prejudice

• Corollary for low-scale Type I: if $m_{\nu} \approx 0$ experimental scale, i.e., $(\tilde{m}_{\nu}^2/Q^2) \approx 0 \implies$ approx. *L* conservation

Pilaftsis, et al [hep-ph/9901206]; Kersten & Smirnov [0705.3221]; Pascoli, et al, [1712.07611]; w/ Pascoli [1812.08750]

warning: limits from LNV searches not applicable to Dirac N

• Corollary: Collider LNV via $N_i \implies$ more new particles! RR [1703.04669]

R. Ruiz (IFJ PAN)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

For super experts (1 slide)

What about quasi-degenerate Majorana neutrinos?

Wolfenstein ('81), Petcov ('82)

Low-scale Seesaws assume SM+ ν_R +S \implies 3 mass states per generation:

(for a review, see C. Weiland's thesis [1311.5860])

$$m_{\nu} \sim \underbrace{\Lambda_{LNV}}_{\text{this is small!}} \left(\frac{m_D}{m_R}\right)^2 \qquad m_{N_{1,2}} \sim \pm \left(\sqrt{m_R^2 + m_D^2} \mp \mathcal{O}(\Lambda_{LNV})\right)$$

For super experts (1 slide)

What about quasi-degenerate Majorana neutrinos?

Wolfenstein ('81), Petcov ('82)

Low-scale Seesaws assume $SM + \nu_R + S \implies 3$ mass states per generation:

(for a review, see C. Weiland's thesis [1311.5860])

$$m_{\nu} \sim \underbrace{\Lambda_{LNV}}_{\text{this is small!!}} \left(\frac{m_D}{m_R}\right)^2 \qquad m_{N_{1,2}} \sim \pm \left(\sqrt{m_R^2 + m_D^2} \mp \mathcal{O}(\Lambda_{LNV})\right)$$
Minus sign \iff a CP phase \implies destructive interference
$$-i\mathcal{M}_{\text{LNV}}(W \rightarrow \ell^{\pm}\ell^{\pm}X) \sim m_{N_1} + e^{i\Delta\phi}m_{N_2} \sim \mathcal{O}(\Lambda_{LNV}) \sim m_{\nu}$$
(two interferring N_i)
$$W^{+(*)} \qquad \int_{I_2}^{I_1} \int_{I_2}^{I_1} B_{\text{ray,Lee, Pilaftsis [hep-ph/0702294]}}$$

In $m_{\nu} \rightarrow 0$ limit (typical for LHC), $m_{N_2} \rightarrow m_{N_1}$ and $\Delta \phi \rightarrow \pi$:

2 quasi-degenerate, Majorana N_i with opposite CP phase ≈ 1 Dirac $N_{i_{100}}$

R. Ruiz (IFJ PAN

For *discovery purposes*, paramerize active-sterile neutrino mixing :

Atre. Han. et al [0901.3589]

 $\underbrace{\nu_{\ell L}}_{} \approx \underbrace{\sum_{m=1}^{3} U_{\ell m} \nu_{m} + V_{\ell m'=4} N_{m'=4}}_{} \quad (\text{neglect heavier } N_{m'})$

flavor basis

mass basis. can be Dirac or Maj.

イロト イ団ト イヨト イヨト 二日

For *discovery purposes*, paramerize active-sterile neutrino mixing :

Atre, Han, et al [0901.3589]

$$\underbrace{\nu_{\ell L}}_{\text{flavor basis}} \approx \underbrace{\sum_{m=1}^{3} U_{\ell m} \nu_m + V_{\ell m'=4} N_{m'=4}}_{\text{mass basis. can be Dirac or Maj.}} \quad (\text{neglect heavier } N_{m'})$$

The SM W couplings to **leptons** in the **flavor basis** are

$$\mathcal{L}_{\text{Int.}} = -\frac{g_W}{\sqrt{2}} W_{\mu}^{-} \sum_{\ell=e}^{\tau} \left[\overline{\ell} \gamma^{\mu} P_L \nu_{\ell} \right] + \text{H.c.}, \qquad \text{where } P_L = \frac{1}{2} (1 - \gamma^5)$$

58 / 77

3

・ロト ・ 同ト ・ ヨト ・ ヨト

For *discovery purposes*, paramerize active-sterile neutrino mixing :

Atre, Han, et al [0901.3589]

$$\underbrace{\nu_{\ell L}}_{\text{flavor basis}} \approx \underbrace{\sum_{m=1}^{3} U_{\ell m} \nu_m + V_{\ell m'=4} N_{m'=4}}_{\text{mass basis. can be Dirac or Maj.}} \quad (\text{neglect heavier } N_{m'})$$

The SM W couplings to **leptons** in the **flavor basis** are

$$\mathcal{L}_{\text{Int.}} = -\frac{g_W}{\sqrt{2}} W^-_{\mu} \sum_{\ell=e}^{\tau} \left[\overline{\ell} \gamma^{\mu} P_L \nu_{\ell} \right] + \text{H.c.}, \qquad \text{where } P_L = \frac{1}{2} (1 - \gamma^5)$$

 \implies *W* couplings to ν and *N* in the **mass basis** are

$$\mathcal{L}_{\text{Int.}} = -\frac{g_W}{\sqrt{2}} W^-_{\mu} \sum_{\ell=e}^{\tau} \left[\overline{\ell} \gamma^{\mu} \mathcal{P}_L \left(\sum_{m=1}^3 U_{\ell m} \nu_m + V_{\ell N} N \right) \right] + \text{H.c.}$$

 \implies N is accessible through W/Z/h bosons

R. Ruiz (IFJ PAN)

searches for low-mass

heavy neutrinos (N)

R. Ruiz (IFJ PAN)

59 / 77

Ξ.

イロト イヨト イヨト イヨト

Searches for low-mass N

For $m_N \ll M_W$, N can appear in decays of baryons, mesons, and τ^{\pm} !

Atre, Han, Pascoli, & Zhang [0901.3589]; Castro & Quintero [1302.1504]; Yuan, Wang ×2 , Ju, & Zhang [1304.3810]; + others

Production rate of mesons $(\pi^{\pm}, \mathcal{D}, \mathcal{B})$ at colliders is **big** $(\sigma_{bX}^{\text{LHC}} \sim 0.1 \text{ mb})$

- sufficient to probe *tiny* rates of LNV
- sufficient to probe LFV

Searches for low-mass N

For $m_N \ll M_W$, N can appear in decays of baryons, mesons, and τ^{\pm} !

Atre, Han, Pascoli, & Zhang [0901.3589]; Castro & Quintero [1302.1504]; Yuan, Wang ×2 , Ju, & Zhang [1304.3810]; + others

Production rate of mesons $(\pi^{\pm}, \mathcal{D}, \mathcal{B})$ at colliders is **big** $(\sigma_{bX}^{\text{LHC}} \sim 0.1 \text{ mb})$

- sufficient to probe *tiny* rates of LNV
- sufficient to probe LFV

Confusion Theorem \implies relative helicity inversion of N

Kayser ('82), Mohapatra & Pal ('98), Denner, et al (NPB'92, PLB'92)

\implies shifts in kinematic distributions

Many dedicated works, e.g., Han, RR, et al [1211.6447]; RR [2008.01092]

Shifts can occur at all scales, e.g., meson decays

Confusion Theorem \implies relative helicity inversion of N

Kayser ('82), Mohapatra & Pal ('98), Denner, et al (NPB'92, PLB'92)

⇒ shifts in kinematic distributions

Many dedicated works, e.g., Han, RR, et al [1211.6447]; RR [2008.01092]

Shifts can occur at all scales, e.g., meson decays

w/ Jeon, Fernandez-Martinez, Kulkarni, et al [(to appear)] ~

R. Ruiz (IFJ PAN
Shifts in kinematic distributions also appear when event is not fully reconstructable, e.g. $e^+e^- \rightarrow Z \rightarrow N\nu \rightarrow e^+e^-\nu\nu$

lots of recent activity! E.g., de Gouvea, et al [1808.10518, 2104.05719, 2105.06576 (FCC-ee), 2109.10358]

R. Ruiz (IFJ PAN)

63 / 77

searches for intermediate

heavy neutrinos (N)

R. Ruiz (IFJ PAN)

64 / 77

= 990

・ロト ・ 四ト ・ ヨト ・ ヨト …

Historically, searches for N with $m_N \sim M_W$ relied on decays of W^{\pm} , or more generally $(q\overline{q})$ annihilation Keung & Senjanovic (PRL'83)

At **ATLAS** and **CMS**, search for $pp \rightarrow \ell_i \ell_j + j$ ets or $\ell_i \ell_j \ell_k + n$ othing

based on seminal works by K&S, del Aguila & Aguilar-Saavedra [0808.2468], and Atre, et al [0901.3589]

Outlook for Current and Future Machines

Community Message: Current + next-gen. facilities can probe *simplest* ($m_{\nu_1} = 0$) leptogenesis scenario w/ ν_R Abdullahi, et al [2203.08039]; w/ Alimena, et al [2203.05502]

 Cottin, Helo, Hirsch [1806.05191]; Abada, Bernal, Losada, Marcano [1812.01720]; K. Cheung, H. Ishida, et al [2004.11537].

 R. Ruiz (IFJ PAN)

 \nuPhys 2 - BND24

 66 / 77

searches for high-mass

heavy neutrinos (N)

R. Ruiz (IFJ PAN)

67 / 77

Ξ.

イロト イヨト イヨト イヨト

w/ Fuks, Neundorf, Peters, Saimpert [2011.02547; 2012.09882]

what do ATLAS and CMS say?

R. Ruiz (IFJ PAN)

69 / 77

3

ATLAS experiment's search for light N with full Run II data

Plotted: Limits on $|V_{\ell N}|^2$ in search for $pp \rightarrow 3\ell + MET$ MET = $-|\sum_k \bar{p}_k^k|$, k = anything

(top) 2 Majorana N

(mid) 1 Dirac N

(btm) 1 Majorana N

No discovery (3)

```
[2204.11988]
```


R. Ruiz (IFJ PAN

70 / 77

CMS experiment's search for light *N* with Run II data **Plotted:** Limits on $|V_{\ell N}|^2$ in search for $pp \rightarrow 3\ell$ +MET ($\ell = e, \mu$)

No discovery \bigcirc but there is hope with $20 - 30 \times$ more data! \bigcirc

• (L)CMS experiments's trile	ton search for short-live	d N [1802.02965]
• (R)CMS search for long-live	d <mark>N</mark>	[2201.05578]
• (not shown) same-sign dilepton Searc	ies 🔹 🕞	</th
R. Ruiz (IEJ PAN)	VPhys 2 - BND24	71 / 77

Finnion 🔢 😏 < -Probing Heavy Majorana Neutrinos and

Recent Articles

Kagorae States

Tracking Down the Origin of Neutrino Mass

sents have set new direct limits on the existence of hypothetical heavy neutrinos, helping

Search for $W^{\pm}W^{\pm} \rightarrow \ell^{\pm}\ell'^{\pm}$ quickly adopted by ATLAS and CMS experiments!

 ν Phys 2 – BND24

72 / 77

< □ > < □ > < □ > < □ > < □ > < □ >

so much not covered

R. Ruiz (IFJ PAN)

73 / 77

・ロト・西ト・ヨト・ヨー うへの

Summary and Outlook

74 / 77

= 990

・ロト ・ 四ト ・ ヨト ・ ヨト …

Unambiguous data that neutrino have nonzero masses

- contrary to the Standard Model (SM) of particle physics
- general arguments, more new particles must exist (unclear what kind)

75 / 77

• • = • •

broad implications for experimental physics

1. Indirect production at non - accelerator laboratories

Many complementary ways to explore consequences of m_{ν}

- colliders and ℓ-DIS facilities ℓℓ, ℓh, hh ☺
- \bullet short and long baseline experiments and νDIS facilities
- space! (underground-, ground-, water-, ice-based telescopes) ©

R. Ruiz (IFJ PAN

76 / 77

77 / 77

3

イロト イヨト イヨト イヨト