BND Graduate School — Blankenberge 2024

Dark Matter Experiments - I Maxime Pierre

- ***** Post-doctoral researcher at Nikhef, working on the XENONnT dark matter direct detection experiment
- Did my Ph.D. in France on: "*Neutrinoless double beta decay search in the XENONnT Dark Matter direct detection experiment*"

Some context about me:

What I will not do: What I would like to do:

List and explain in details all the ongoing effort to search for Dark Matter

Give you the keys to understand the challenges associated with the detection of Dark Matter and general overview of the current status

Bibliography 3

arXiv:2406.01705

Marco Cirelli

Laboratoire de Physique Théorique et Hautes Énergies (LPTHE), CNRS & Sorbonne Université, 4 Place Jussieu, Paris, France

Alessandro Strumia

Dipartimento di Fisica dell'Università di Pisa, Italia

Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221, USA

Abstract

We review observational, experimental and theoretical results related to Dark Matter.

Version 0, November 11, 2011 – Version 1, June 3, 2024 – Version 2, July 31, 2024

Dark Matter

~500 pages!!! I will obviously not cover everything

Jure Zupan

J. Billard et al 2022 Rep. Prog. Phys. **85** 056201Prog. Phys Rep. 202 **Billard** et

Will Focus on WIMPs searches

-
-
-
-

Lecture 3 - Dark Matter Production

Dark Matter Indirect Detection

Lecture 1 - Dark Matter Direct Detection part 1 Lecture 2 - Dark Matter Direct Detection part 2 Direct Detection Principle Low-background Experiments Experimental Landscape Case Example: XENONnT Application to Neutrino Physics

Dark Matter - Direct Detection Part I 7

Overview of the current experimental Landscape for Dark Matter Direct Detection

3

1

2

Direct Detection Principle

Low-background Experiments

Experimental Landscape

Main strategy used to search for Dark Matter Direct Detection

Main Requirements/Characteristics required to search for DM Direct Detection Detection Technology

- Ground based experiment looks for scatter of galactic DM particles with target material.
	- **▶ Sun rotation around galactic** center
	- Earth going through DM Halo
	- Dark Matter "Wind" B

Dark Matter in the Milky Way:

Dark Matter - Direct Detection Principle 10

শ⊢

MIMA

Artwork by Sandbox Studio, Chicago with Corinne Mucha

GYGNUS

Dark Matter Signature:

***** Try to measure the interaction of a DM particle in the form of:

> T. Lin, TASI lectures, arXiv:1904.07915 arXiv:1904.0791 lectures, ίn, Ë

Scattering on Nucleus

- Scattering on Electron P
- Others (Absorption, Inelastic,…)
- From energy and momentum conservation with non-relativistic DM:

$$
E_r = E_{\text{kin}} \frac{4m_{\text{DM}} \cdot m_N}{(m_{\text{DM}} + m_N)^2} \cos^2 \theta_r
$$

How Challenging is it?

- Expected event rate of WIMP-Nucleus scattering in a detector →
- Parameters that can impact the recoil rate expected in your experiment
	- Astrophysics
	- Detector physics
	- Particle physics
	- **EXANGLERY PHYSICS**

Unknown parameter we are looking for

Dark Matter Halo Model:

dER = $\rho_0 M_T$ $m_N m_\chi$ ∫ *v*esc *v*min *dv f*(*v*)*v dσχ*−*^N dEr*

Galactocentric r in kpc

Local DM density and velocity distribution plays a major role!

Dark Matter Halo Model:

dER = $\rho_0 M_T$ $m_N m_\chi$ ∫ *v*esc *v*min *dv f*(*v*)*v dσχ*−*^N dEr*

- Annual modulation of the WIMP velocity expected
	- DM signature we can look for. D

Local DM density and velocity distribution plays a major role!

> $\rho_0 = 0.30 - 0.40$ GeV/cm³ $\rho_0 = 0.30$ GeV/cm³. Recent results **B** Historically

dER = $\rho_0 M_T$ $m_N m_\chi$ ∫ *v*esc *v*min *dv f*(*v*)*v dσχ*−*^N dEr*

- Annual modulation of the WIMP velocity expected
	- DM signature we can look for. D
- **Boundary on DM velocity**

Local DM density and velocity distribution plays a major role!

> $\rho_0 = 0.30 - 0.40$ GeV/cm³ $\rho_0 = 0.30$ GeV/cm³. Recent results **E** Historically

$$
v_{\text{esc}} \approx 544 \pm 35 \text{ km/s}
$$

$$
v_{\text{min}} = \frac{m_{\chi} + m_{N}}{m_{\chi}} \sqrt{\frac{E_{R}}{2m_{N}}}
$$

Direct Detection Principle

Dark Matter Halo Model:

Interaction Cross section:

0: cross section at zero momentum transferred F: Form factor describing how the WIMP interferes with the nucleon structure of the nucleus

- Unknown Interaction mechanism
- **E** Interactions involve nuclear spin, giving Spin-Dependent (SD) scattering, or they do not, giving Spin-Independent (SI)

$$
\frac{d\sigma_{\chi-N}}{dE_r} = \frac{m_N}{2v^2\mu^2} \left[\sigma_0^S \mathbf{F}_{\mathbf{SL}}^2(E_r) + \sigma_0^S \mathbf{F}_{\mathbf{SD}}^2(E_r) \right]
$$

$$
\propto A^2 \rightarrow \text{Coherent enhancement}
$$

dR dER = $\rho_0 M_T$ $m_N m_\chi$ \int *v*esc *v*min *dv f*(*v*)*v dσχ*−*^N dEr*

nent of the cross section

Detector Physics dependencies

-
- *** Target nucleus mass, A, spin**
- Energy threshold of the detector

From energy recoil spectra to expected number of WIMP-N events

Signal contour

Limit curve (90% C.L.)

- Signal contour
- Limit curve (90% C.L.)

Scintillation (Light)

- ***** Need a detection technology able to identify the sparse signal.
- ***** Recoiled nucleus (electron) will deposit energy in detection medium via:
	- **Charge**
	- **Heat** B
	- Light

Liquid/Crystal scintillating detectors

Directional detectors Ge/Si detectors

What do we measure?

- Direct Detection of Dark Matter involve
	- **B** Recent results
	- **B** Historically

Summary:

- **Background** mitigation strategy
- Discrimination power (signal/background)
- Large exposure
- **E** Low energy threshold (low-WIMP mass)

Features of a Low-background experiment

Searching for a sparse signal

Unwanted physical process, mimicking the signature of your signal

Background Identification

Signal of Interest:

Type of background:

- ***** Interaction producing a (nuclear) recoil in the same energy range than WIMP
	- External backgrounds
	- Cosmogenic backgrounds P
	- *E* Internal backgrounds

WIMP scattering-off a target nuclei (Nuclear Recoil)

External/Internal to the target material

- ***** Radiogenic contaminant naturally present in all $materials$ \rightarrow Including the detector itself and its environment!
	- Primordial decay chains (238U, 235U 232 Th), with α , β , γ emission, and neutron production via (α, n) reaction or fission [ER & NR]
	- Other Isotopes: 60Co, 137Cs, 40K, … [ER]
- **EXEC** Decay product can induce electronic or nuclear recoil in the detection medium.

Background Source - Radiogenic

Radiogenic Background Source:

Mitigation Strategy:

Background Source - Radiogenic

Detector Material Selection

■ Screening campaign of material samples to select the most radio pure and allow background modelling.

Mitigation Strategy:

Background Source - Radiogenic

Detector Material Selection

- **Screening campaign of material samples to** select the most radio pure and allow background modelling.
- Detector Shielding
	- **▶ Passive Shielding: Material, like** Archaeological Lead, to suppress
	- Active Shielding: Instrumented shielding volume, such as Cherenkov Water Tank
	- **▶ Self-Shielding: Part of detection medium as** shielding \rightarrow require position reconstruction.

Background Source - Cosmogenic

Cosmogenic Background Source:

- Muons produced by cosmic ray shower in the atmosphere
	- **▶ Can produce Muon-induced neutrons** via hadronic process when interacting with the matter [NR]
	- Cosmogenic activation (via spallation, fragmentation, capture…): 3H, 60Co, 32Si, 39Ar, … [ER]
- Relevant underground but also above ground!

The Underground World 29

Mitigation Strategy:

Background Source - Intrinsic 30

Intrinsic Background Source:

- **Example 20 August 20** target/detection medium (136Xe, 42Ar, 85Kr,…)
- ***** Radon (222Rn) Emanation: Recoil/Diffusion of Radon in material following alpha decay of Radium 226Ra

Natural xenon composition

Mitigation Strategy:

- Selection/Production of pure target/detection medium
- Offline/Online Purification system
- *** Surface Coating to limit radon emanation**

Background Source - Intrinsic

Journal of Physics: Conference Series 1468 (2020) 012234 **Physic:** \overline{O} purnal

Liquid Xenon purification unit used in XENONnT for online purification

Neutrino Energy (MeV)

***** Neutrino from the sun or the atmosphere

Background Source - Solar Neutrinos

Ultimate source of Background?

- Neutrino-electron elastic scattering [ER]
- Coherent Elastic neutrino-Nucleus Scattering (CEvNS) [NR]
- ***** Shielding and Veto system impossible... **Neutrino fog**
- **One way to work-around:**
	- **E** Directionality: we know where they are coming from.

Background Mitigation Strategy 33

Radiogenic Radiogenic n γ

β

γ

 α

Internal

n

Target/Detector

Active/Passive Shielding

Summary:

Underground Laboratory

Background Discrimination.

Can we further suppress backgrounds in our detector?

- \bullet Use differences in detector response to particle (χ,α,n,β) or interaction (ER/NR) type
	- Combination of multiples energy deposition channel (Light, Charge, Heat)
	- Pulse Shape Discrimination (PSD)
- Use calibration data to study detector response to signal/background events

Large diversity of detector to face the challenges of DM detection

- Different detection techniques with different goals (low-/high-mass DM)
- Detector choice associated with Pro and Cons

min break, question?

High-Purity Scintillator Crystals 37

- Target: NaI and CsI
- \bullet Target mass ~ $\mathcal{O}(100)$ kg
- **Energy Threshold ~** $O(1)$ **keV**
- **EXECTEDE: Detection channel: Light**

ne background Comparatively high intrinsic

Strength Weakness

- Mature technology, can operate stably for long periods of time
- High mass number, boost SI

sensitivity

No Fiducialisation or ER/NR discrimination

Mostly used for annual modulation searches

Cryogenic Bolometers

Efficient to search for lowmass WIMP

Excelle low ene

Two det backgr

- Target: Ge, Si, and CaWO4
- \bullet Target mass $\sim \mathcal{O}(1)$ kg
- **Energy Threshold ~** $O(10-100)$ **eV**
- Detection channel: Heat, (and Light, or Charge)

Noble Liquid Scintillators \cdots 39

Strength Weakness

 \blacksquare Target mass scalability **Target mass scalability Target mass scalability Target Scalability**

fiducialisation and discrimination not as efficient as the next type of detection technique…

Efficient to search for highmass WIMP

 \blacksquare

- ***** Target: Ar and Xe
- \bullet Target mass ~ 0(1000) kg
- **Energy Threshold ~** $O(1)$ **keV**
	- Detection channel: Light

-
- Position reconstruction for
- Background discrimination for Ar

Time Projection Chambers (Double phase) 40

- ***** Target: Xe and Ar
- \bullet Target mass $\sim \mathcal{O}(10\ 000)$ kg
- **Energy Threshold ~** $O(1)$ **keV**
	- Detection channel: Light and Charge

low-mass WIMP search... Energy threshold to high for

Leading technology for high-mass WIMP search

Strength Weakness

fiducialisation

- Target mass scalability
- Position reconstruction for
- Background discrimination with light and charge channel

But their is some work-around possible (Ionization-only, Migdal effect)

- Target: Superheated (Kept at a temperature just above their boiling point) fuilds, C₃F₈
- \blacksquare Target mass ~ $\mathcal{O}(10)$ kg
- **Energy Threshold ~** $O(1)$ **keV**
	- Detection channel: Optical and Acoustic **(!)**

- \mathbb{P}' \mathbb{P}' inc Can be tuned to be only sensitive to nuclear recoils (dE/ dx of the recoiling particle)
- Position reconstruction for

Strength Weakness

fiducialisation

Contain 19F, best sensitivity for SD WIMP-proton coupling

Need to change the pressure inside to remove bubbles after each event \rightarrow dead time and difficult calibration

Low-Pressure Gas TPG

- *** Target: Low-pressure gas, such as CF4, can** use a mixture of gases also (Ne, CH4,…)
- \bullet Target mass $\sim \mathcal{O}(0.1)$ kg
- **Energy Threshold ~** $O(1-10)$ **keV**
- Detection channel: Charge

Strength Weakness

Pro / Cons Small target mass, scalability is challenging

- Track reconstruction of the deposited energy
- Electronic background rejection (longer range, lower ionisation

density)

Can be used to search WIMPs in the neutrino fog, and sensitive to SD WIMP-proton coupling

No self-shielding

Charged Coupled Devices (CCDs) 43

Pro / Cons Small target mass, scalability is challenging

> Presence of an "unkown" background at low-energy (not LEE! From charge here)

- Target: Ge and Si
- ***** Target mass $\sim \mathcal{O}(1)$ kg

4

- **Energy Threshold ~** $O(1-10)$ **eV**
- Detection channel: Charge

- Excellent spatial resolution for particle identification
- Very low-energy threshold (Ge: 2.9 eV, Si: 3.6 eV), aim for low-

Strength **Weakness**

DM-electron scattering

Experimental Landscape

How those detection technologies are actually used in the field to search for Dark Matter?

Neutrino fog from different source of neutrino

- Neutrino fog from different source of neutrino
- A large part of the parameter space have been already cover, without any positive result…

- Neutrino fog from different source of neutrino
- A large part of the parameter space have been already cover, without any positive result…
- **Well, is it really true?**

\bullet ~ 250 kg NaI(TI) scintillating crystals taking data in the underground laboratory of Gran Sasso in Italy for ~ 22 years

Clear Signal Modulation:

-
-

***** Observe annual modulation signal consistent with WIMP hypothesis

PMT

A Series of experiments are running/or under development to test DAMA results

EX But DAMA results is in strong tension with result from many other DM direct

DAMA/LIBRA DISCOVERY?

- detection experiments with better sensitivity.
- What is the source of the annual modulation signal seen in DAMA?
	- Unknown source of backgrounds? (40K?)
	-
	- Dark Matter?

Modulation seen in the 3 keV energy bin, close to the energy threshold from the detector $(2 \text{ keV}) \rightarrow$ hard to control systematics. Upgraded version of DAMA currently running with lower energy thresholds.

ANAIS-112 | COSINE-100 | SABRE 48

ANAIS-112

COSINE-100

SABRE

- 9 Ultrapure NaI(Tl) crystals (total: 112.5 kg)
- Operating in Canfranc UL (Spain)
-

- 5 Ultrapure NaI(Tl) crystals (total: 61.3 kg)
- Operating in Yangyang UL (Korea)
- 3 year [results](https://journals.aps.org/prd/pdf/10.1103/PhysRevD.106.052005) compatible with null and DAMA results (lack of stat.)

2x Ultra-low background NaI(Tl): North (LNGS - Italia), South (SUPL - Australia)

***** Preliminary 6 year [results](https://agenda.infn.it/event/39713/contributions/234147/attachments/123411/180961/IDM2024_ANAIS112_IvanCoarasa_vdef.pdf) incompatible with the DAMA/LIBRA result at $~4\sigma$

R&D Ongoing

Noble gases experiments are leading the race for high-mass WIMP search

- ***** Noble gases experiments are leading the race for high-mass WIMP search
- **Example Reaching multiple tonne of** noble element as target

Argon experiments 51

DEAP-3600

- 3.3 tonnes of liquid argon target | liquid scintillator detector
- Operating in SNOLAB UL (Canada)
- ***** No WIMP-like signal find in the 1st year dataset
- 3 year dataset soon, and upgrade ongoing

Excellent ER/NR discrimination

Argon experiments

DEAP-3600

DarkSide-50

- ~46 kg of liquid argon active mass | dual-phase TPC
- Operational in LNGS UL (Italy) between 2013-2019
- Ongoing transition → DarkSide-20k

- 3.3 tonnes of liquid argon target | liquid scintillator detector
- Operating in SNOLAB UL (Canada)
- ***** No WIMP-like signal find in the 1st year dataset
- 3 year dataset soon, and upgrade ongoing

Xenon dual-phase TPC 53

Will be discussed in further detail tomorrow

Low-mass WIMP kingdom: cryogenic bolometers and CCDs

CRESST-III | SuperCDMS | EDELWEISS-III 55

CRESST-III SuperCDMS EDELWEISS-III

- \approx ~24 g Scintillating crystal CaWO4
- [Result](https://arxiv.org/pdf/1904.00498) from 1st run operating at LNGS
- Limitation by Low-Energy Excess (LEE)

Ge and Si cryogenic semiconductor

Will operate at

-
- SNOLAB
- 2025

Commissioning in

- Ge cryogenic semiconductor
- Operated at Modane
- ***** 2014-2015: 582 kgdays exposure

Limitation by Low-Energy Excess (LEE)

-
-

Unknown source of backgrounds impacting currently all detector based on this technology

A lot of effort from the community to identify and mitigate the LEE. Potentially from structural stress.

DAMIC/DAMIC-M/SENSEI

- \bullet ~6g CCDs (7)
- Operate at SNOLAB
- Multiple results already published

~13g CCDs, two for

- the first run
-
-

Operate at Modane

Construction phase towards the kg scale

- **× Different phase, now** reaching ~40g per CCDs (19)
- **¤ Operate at SNOLA**
- ***** Science run ongoir

Direct Detection constraints on SI electron scattering

Noble gases experiment are also in the competition for low-mass DM search

DM mass in GeV

Noble gases experiment are also in the competition for low-mass DM search

Current State of the Art*

DM mass in GeV

Final test for DAMA results

Future perspective

Planned future, and R&D project for direct detection experiment, few examples

Next generation of Noble gases TPC to reach the neutrino fog

Directionality to overcome it

Exploring the low-mass DM realm

