Dark Matter Experiments - I Maxime Pierre

BND Graduate School – Blankenberge 2024

Avant-propos

Some context about me:

- Post-doctoral researcher at Nikhef, working on the XENONnT dark matter direct detection experiment
- Did my Ph.D. in France on: "Neutrinoless double beta decay search in the XENONnT Dark Matter direct detection experiment"

What I will not do:

List and explain in details all the ongoing effort to search for Dark Matter

What I would like to do:

Give you the keys to understand the challenges associated with the detection of Dark Matter and general overview of the current status

Bibliography

arXiv:2406.01705

Marco Cirelli

Laboratoire de Physique Théorique et Hautes Énergies (LPTHE), CNRS & Sorbonne Université, 4 Place Jussieu, Paris, France

Alessandro Strumia

Dipartimento di Fisica dell'Università di Pisa, Italia

Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221, USA

Abstract

We review observational, experimental and theoretical results related to Dark Matter.

Version 0, November 11, 2011 – Version 1, June 3, 2024 – Version 2, July 31, 2024

Dark Matter

~500 pages!!! I will obviously not cover everything

Jure Zupan

Phys Prog. Rep. 202 **Billard et**

Will Focus on WIMPs searches

Overview

Lecture 1 - Dark Matter Direct Detection part 1 **Direct Detection Principle** Low-background Experiments **Experimental Landscape** Lecture 2 - Dark Matter Direct Detection part 2 Case Example: XENONnT **Application to Neutrino Physics**

Lecture 3 - Dark Matter Production

Dark Matter Indirect Detection

Dark Matter - Direct Detection Part I

Direct Detection Principle

Main strategy used to search for Dark Matter Direct Detection

Low-background Experiments

Main Requirements/Characteristics required to search for DM Direct Detection **Detection Technology**

Experimental Landscape

2

3

Overview of the current experimental Landscape for Dark Matter Direct Detection

Dark Matter in the Milky Way:

- Ground based experiment looks for scatter of galactic DM particles with target material.
 - Sun rotation around galactic center
 - Earth going through DM Halo
 - Dark Matter "Wind"

Dark Matter - Direct Detection Principle

_∭−

VIMP

Artwork by Sandbox Studio, Chicago with Corinne Mucha

GYGNVS

Dark Matter Signature:

Try to measure the interaction of a DM particle in the form of:

Scattering on Nucleus

- Scattering on Electron
- Others (Absorption, Inelastic,...)
- From energy and momentum conservation with non-relativistic DM:

$$E_r = E_{\rm kin} \frac{4m_{\rm DM} \cdot m_N}{(m_{\rm DM} + m_N)^2} \cos^2 \theta_r$$

T. Lin, TASI lectures, arXiv:1904.07915

How Challenging is it?

- Expected event rate of WIMP-Nucleus scattering in a detector \rightarrow
- Parameters that can impact the recoil rate expected in your experiment
 - Astrophysics
 - **Detector physics**
 - Particle physics
 - Nuclear physics

Unknown parameter we are looking for

Dark Matter Halo Model:

Local DM density and velocity distribution plays a major role!

 $\frac{dR}{dE_R} = \frac{\rho_0 M_T}{m_N m_{\chi}} \int_{v_{\min}}^{v_{esc}} \frac{dv f(v)v}{dv f(v)v} \frac{d\sigma_{\chi-N}}{dE_r}$

Galactocentric *r* in kpc

Dark Matter Halo Model:

Local DM density and velocity distribution plays a major role!

- Annual modulation of the WIMP velocity expected

 $\frac{dR}{dE_R} = \frac{\rho_0 M_T}{m_N m_{\chi}} \int_{v_{min}}^{v_{esc}} \frac{dv f(v)v}{dv f(v)v} \frac{d\sigma_{\chi-N}}{dE_r}$

Dark Matter Halo Model:

Local DM density and velocity distribution plays a major role!

> $\rho_0 = 0.30 - 0.40 \,\text{GeV/cm}^3$ Recent results $\rho_0 = 0.30 \, {\rm GeV/cm^3}$ Historically

- Annual modulation of the WIMP velocity expected
 - DM signature we can look for.
- Boundary on DM velocity

 $\frac{dR}{dE_R} = \frac{\rho_0 M_T}{m_N m_{\chi}} \int_{v_{min}}^{v_{esc}} \frac{dv f(v)v}{dv f(v)v} \frac{d\sigma_{\chi-N}}{dE_r}$

$$v_{\rm esc} \approx 544 \pm 35 \,\text{km/s}$$
$$v_{\rm min} = \frac{m_{\chi} + m_N}{m_{\chi}} \sqrt{\frac{E_R}{2m_N}}$$

Interaction Cross section:

- Unknown Interaction mechanism
- Interactions involve nuclear spin, giving Spin-Dependent (SD) scattering, or they do not, giving Spin-Independent (SI)

$$\frac{d\sigma_{\chi-N}}{dE_r} = \frac{m_N}{2v^2\mu^2} \begin{bmatrix} \sigma_0^{\text{SI}}F_{\text{SI}}^2(E_r) + \sigma_0^{\text{SD}}F_{\text{SD}}^2(E_r) \end{bmatrix}$$

$$\propto A^2 \rightarrow \text{Coherent enhancen}$$

 σ_0 : cross section at zero momentum transferred F: Form factor describing how the WIMP interferes with the nucleon structure of the nucleus

 $\frac{dR}{dE_R} = \frac{\rho_0 M_T}{m_N m_\chi} \int_{v_{\min}}^{v_{esc}} dv f(v) v \frac{d\sigma_{\chi-N}}{dE_r}$

nent of the cross section

Detector Physics dependencies

- Target mass scalability
- Target nucleus mass, A, spin
- Energy threshold of the detector

From energy recoil spectra to expected number of WIMP-N events

eiple

Signal contour

Limit curve (90% C.L.)

- Signal contour
- Limit curve (90% C.L.)

What do we measure?

- Need a detection technology able to identify the sparse signal.
- Recoiled nucleus (electron) will deposit energy in detection medium via:
 - Charge
 - Heat
 - Light

Scintillation (Light)

Liquid/Crystal scintillating detectors

Directional detectors Ge/Si detectors

Summary:

- Direct Detection of Dark Matter involve
 - Recent results
 - Historically

Features of a Low-background experiment

Searching for a sparse signal

- **Background** mitigation strategy
- Discrimination power (signal/background)
- Large exposure
- Low energy threshold (low-WIMP mass)

Unwanted physical process, mimicking the signature of your signal

Background Identification

Signal of Interest:

WIMP scattering-off a target nuclei (Nuclear Recoil)

Type of background:

- Interaction producing a (nuclear) recoil in the same energy range than WIMP
 - External backgrounds
 - Cosmogenic backgrounds
 - Internal backgrounds

External/Internal to the target material

Background Source - Radiogenic

Radiogenic Background Source:

- Radiogenic contaminant naturally present in all materials \rightarrow Including the detector itself and its environment!
 - Primordial decay chains (²³⁸U, ²³⁵U ²³² Th), with α , β , γ emission, and neutron production via (α , n) reaction or fission [ER & NR]
 - ▷ Other Isotopes: ⁶⁰Co, ¹³⁷Cs, ⁴⁰K, … [ER]
- Decay product can induce electronic or nuclear recoil in the detection medium.

Background Source - Radiogenic

Mitigation Strategy:

Detector Material Selection

Screening campaign of material samples to select the most radio pure and allow background modelling.

Background Source - Radiogenic

Mitigation Strategy:

Detector Material Selection

- Screening campaign of material samples to select the most radio pure and allow background modelling.
- Detector Shielding
 - Passive Shielding: Material, like Archaeological Lead, to suppress
 - Active Shielding: Instrumented shielding volume, such as Cherenkov Water Tank
 - Self-Shielding: Part of detection medium as shielding \rightarrow require position reconstruction.

Background Source - Cosmogenic

Cosmogenic Background Source:

- Muons produced by cosmic ray shower in the atmosphere
 - Can produce Muon-induced neutrons via hadronic process when interacting with the matter [NR]
 - Cosmogenic activation (via spallation, fragmentation, capture...): ³H, ⁶⁰Co, ³²Si, ³⁹Ar, ... [ER]
- Relevant underground but also above ground!

The Underground World

Mitigation Strategy:

Background Source - Intrinsic

Intrinsic Background Source:

- Radiogenic component naturally present in the target/detection medium (¹³⁶Xe, ⁴²Ar, ⁸⁵Kr,...)
- Radon (²²²Rn) Emanation: Recoil/Diffusion of Radon in material following alpha decay of Radium ²²⁶Ra

	Natural	xenon	compo	sitio
--	---------	-------	-------	-------

Isotope	Abundance [%]	Decay mode	Hal
$^{124}\mathrm{Xe}$	0.09	$2\nu \text{ECEC}$	$(1.1 \pm 0.2_{s})$
$^{126}\mathrm{Xe}$	0.09	stable	•
$^{128}\mathrm{Xe}$	1.92	\mathbf{stable}	
129 Xe	26.4	\mathbf{stable}	
$^{130}\mathrm{Xe}$	4.08	\mathbf{stable}	
$^{131}\mathrm{Xe}$	21.2	\mathbf{stable}	
$^{132}\mathrm{Xe}$	26.9	stable	
$^{134}\mathrm{Xe}$	10.4	stable	
136 Xe	8.87	2νββ	(2.165 ± 0.016)

TAKE ACTION ON RADON Radon is 0 an invisible Radon is the radioactive 2 LEADING CAUSE gas that comes from radon-induced of LUNG the ground LUNG CANCER CANCER Radon is in The only way to know ALL buildings how much radon is in our home is to TEST HOW TO REDUCE RADON IN YOUR HOME HIRING a certified professional DON BY UP TO 90% EALING cracks RADON TEST and Recent research found that ONLY 29% OF CANADIANS with high RADON in their home took action to REDUCE it! lung cancer www.takeactiononradon.ca

Health Sando Canada Canada

Background Source - Intrinsic

Mitigation Strategy:

- Selection/Production of pure target/detection medium
- Offline/Online Purification system
- Surface Coating to limit radon emanation

Liquid Xenon purification unit used in XENONnT for online purification

Physics of ournal

Background Source - Solar Neutrinos

Ultimate source of Background?

Neutrino from the sun or the atmosphere

- Neutrino-electron elastic scattering [ER]
- Coherent Elastic neutrino-Nucleus Scattering (CEvNS) [NR]
- Shielding and Veto system impossible... **Neutrino fog**
- One way to work-around:
 - Directionality: we know where they are coming from.

Background Mitigation Strategy

n

Int

0

Summary:

Underground Laboratory

Active/Passive Shielding

Target/Detector

Radiogenic

Background Discrimination

Can we further suppress backgrounds in our detector?

- \blacksquare Use differences in detector response to particle (χ, α, n, β) or interaction (ER/NR) type
 - Combination of multiples energy deposition channel (Light, Charge, Heat)
 - Pulse Shape Discrimination (PSD)
- Use calibration data to study detector response to signal/background events

Detection Techniques

Large diversity of detector to face the challenges of DM detection

- Different detection techniques with different goals (low-/high-mass DM)
- Detector choice associated with Pro and Cons

5 min break, question?

High-Purity Scintillator Crystals

Mostly used for annual modulation searches

sensitivity

- Target: Nal and Csl
- **Target mass** $\sim \mathcal{O}(100)$ kg
- Energy Threshold $\sim \mathcal{O}(1)$ keV
- Detection channel: Light

Strength

- Mature technology, can operate stably for long periods of time
- High mass number, boost SI

Weakness

Comparatively high intrinsic background

No Fiducialisation or ER/NR discrimination

Cryogenic Bolometers

Efficient to search for lowmass WIMP

Excelle low ene

Two de backgr

- **Target: Ge, Si, and CaWO**₄
- Target mass $\sim \mathcal{O}(1)$ kg
- Energy Threshold $\sim O(10-100) \text{ eV}$
- Detection channel: Heat, (and Light, or Charge)

Strength	Weakness	
ent energy resolution and	Cryogenic detectors (< 50 mł	
ergy threshold	Target mass scalability is challenging	
etection channel to allow round rejection + PSD	Presence of an "unkown" (structural stress?) backgrou at low-energy (LEE - phonor	

Noble Liquid Scintillators

Efficient to search for highmass WIMP

fiducialisation

- Target: Ar and Xe
- **Target mass** $\sim \mathcal{O}(1000)$ kg
- Energy Threshold $\sim \mathcal{O}(1)$ keV
 - Detection channel: Light

Strength **Weakness** Target mass scalability Only one detection channel Position reconstruction for Background discrimination not as efficient as the next type of Background discrimination for Ar detection technique...

Time Projection Chambers (Double phase)

Leading technology for high-mass WIMP search

fiducialisation

- **Target: Xe and Ar**
- **Target mass** $\sim \mathcal{O}(10\ 000)$ kg
- Energy Threshold $\sim \mathcal{O}(1)$ keV
 - Detection channel: Light and Charge

Strength

- Target mass scalability
- Position reconstruction for
- Background discrimination with light and charge channel

Weakness

Energy threshold to high for low-mass WIMP search...

But their is some work-around possible (lonization-only, Migdal effect)

Bubble Chambers

Contain ¹⁹F, best sensitivity for **SD WIMP-proton coupling**

fiducialisation

- Target: Superheated (Kept at a temperature) just above their boiling point) fuilds, C₃F₈
- **Target mass** $\sim \mathcal{O}(10)$ kg
- Energy Threshold $\sim \mathcal{O}(1)$ keV
 - Detection channel: Optical and Acoustic (!)

Strength

- Can be tuned to be only sensitive to nuclear recoils (dE/ dx of the recoiling particle)
- Position reconstruction for

Weakness

Need to change the pressure inside to remove bubbles after each event \rightarrow dead time and difficult calibration

Low-Pressure Gas TPC

Can be used to search WIMPs in the neutrino fog, and sensitive to SD WIMP-proton coupling

density)

- Target: Low-pressure gas, such as CF₄, can use a mixture of gases also (Ne, CH₄,...)
- **Target mass** $\sim \mathcal{O}(0.1)$ kg
- Energy Threshold ~O(1-10) keV
- Detection channel: Charge

Strength

- Track reconstruction of the deposited energy
- Electronic background rejection (longer range, lower ionisation)

Weakness

Small target mass, scalability is challenging

No self-shielding

Charged Coupled Devices (CCDs)

- Target: Ge and Si
- **Target mass** $\sim \mathcal{O}(1)$ kg

- Energy Threshold ~ $\mathcal{O}(1-10)$ eV
- Detection channel: Charge

DM-electron scattering

Strength

- Excellent spatial resolution for particle identification
- Very low-energy threshold (Ge: 2.9 eV, Si: 3.6 eV), aim for low-

Weakness

Small target mass, scalability is challenging

Presence of an "unkown" background at low-energy (not LEE! From charge here)

Experimental Landscape

How those detection technologies are actually used in the field to search for Dark Matter?

Neutrino fog from different source of neutrino

- Neutrino fog from different source of neutrino
- A large part of the parameter space have been already cover, without any positive result...

- Neutrino fog from different source of neutrino
- A large part of the parameter space have been already cover, without any positive result...
- Well, is it really true?

DAMA DISCOVERY!

Clear Signal Modulation:

~ 250 kg Nal(TI) scintillating crystals taking data in the underground laboratory of Gran Sasso in Italy for ~ 22 years

Observe annual modulation signal consistent₁ with WIMP hypothesis

(a)

PMT

DAMA/LIBRA DISCOVERY?

- detection experiments with better sensitivity.
- What is the source of the annual modulation signal seen in DAMA?
 - Unknown source of backgrounds? (⁴⁰K?)

 - Dark Matter?

A Series of experiments are running/or under development to test DAMA results

But DAMA results is in strong tension with result from many other DM direct

Modulation seen in the 3 keV energy bin, close to the energy threshold from the detector (2 keV) \rightarrow hard to control systematics. Upgraded version of DAMA currently running with lower energy thresholds.

ANAIS-112 | COSINE-100 | SABRE

ANAIS-112

- 9 Ultrapure Nal(TI) crystals (total: 112.5 kg)
- Operating in Canfranc UL (Spain)
- **Preliminary 6 year** results incompatible with the DAMA/LIBRA result at $\sim 4\sigma$

COSINE-100

- 5 Ultrapure Nal(TI) crystals (total: 61.3 kg)
- Operating in Yangyang UL (Korea)
- 3 year results compatible with null and DAMA results (lack of stat.)

SABRE

2x Ultra-low background Nal(TI): North (LNGS - Italia), South (SUPL - Australia)

R&D Ongoing

Noble gases experiments are leading the race for high-mass WIMP search

Long history

Wild race:

- Noble gases experiments are leading the race for high-mass WIMP search
- Reaching multiple tonne of noble element as target

Argon experiments

DEAP-3600

- 3.3 tonnes of liquid argon target | liquid scintillator detector
- Operating in SNOLAB UL (Canada)
- No WIMP-like signal find in the 1st year dataset
- Sear dataset soon, and upgrade ongoing

Excellent ER/NR discrimination

Argon experiments

DEAP-3600

- 3.3 tonnes of liquid argon target | liquid scintillator detector
- Operating in SNOLAB UL (Canada)
- No WIMP-like signal find in the 1st year dataset
- Sear dataset soon, and upgrade ongoing

DarkSide-50

- ~46 kg of liquid argon active mass | dual-phase TPC
- Operational in LNGS UL (Italy) between 2013-2019
- Ongoing transition → DarkSide-20k

ear dataset ngoing

dual-phase TPC en 2013-2019

Xenon dual-phase TPC

LZ

Will be discussed in further detail tomorrow

XENONnT

Low-mass WIMP kingdom: cryogenic bolometers and CCDs

CRESST-III | SuperCDMS | EDELWEISS-II

- ~24 g Scintillating crystal CaWO₄
- Result from 1st run operating at LNGS
- Limitation by Low-Energy Excess (LEE)

- **SNOLAB**
- 2025

SuperCDMS

Ge and Si cryogenic semiconductor

Will operate at

Commissioning in

EDELWEISS-III

- **Ge cryogenic** semiconductor
- Operated at Modane
- **×** 2014-2015: 582 kgdays exposure

CRESST-III

Limitation by Low-Energy Excess (LEE)

Unknown source of backgrounds impacting currently all detector based on this technology

A lot of effort from the community to identify and mitigate the LEE. Potentially from structural stress.

DAMIC/DAMIC-M/SENSEI

DAMIC

- ~6g CCDs (7)
- Operate at SNOLAB
- Multiple results already published

- the first run

~13g CCDs, two for

Operate at Modane

Construction phase towards the kg scale

- Different phase, now reaching ~40g per **CCDs (19)**
- Operate at SNOLAB
- Science run ongoing

Current State of the Art*

Noble gases experiment are also in the competition for low-mass DM search

Direct Detection constraints on SI electron scattering

Current State of the Art*

Direct Detection constraints on SD scattering on neutrons

Noble gases experiment are also in the competition for low-mass DM search

Future perspective

arx	(17:2406.01705						
	Experiment	Location	Data Takir	ng Readout	Target	Home	Ref.
	DARKSIDE-20K	Gran Sasso, Italy	2023	scint.+ioniz. (~ $85 \mathrm{K}$)	$20\mathrm{tAr}$	web	[378]
	SBC	SNOLAB, Canada	2028	scint. bubble chamb. ($\sim 100 \mathrm{K}$)	$10 \mathrm{kg} \mathrm{Ar}$	talk	[379]
	ARGO	SNOLAB, Canada	2029	scint.+ioniz. $(\sim 85\mathrm{K})$	$300\mathrm{t}\mathrm{Ar}$	web	web
	DarkSide-LM			scint.+ioniz. ($\sim 85 \mathrm{K}$)	$1.5\mathrm{t}\mathrm{Ar}$	web	[380]
	LZ-HydroX	Sanford, SD	202x	ioniz. $+$ scint. (174 K)	$5.5\mathrm{t~Xe}+2\mathrm{kg~H_2}$	web	LOI
1	DARWIN/XLZD	undetermined	2027/28	scint.+ioniz. ($\sim 170 \mathrm{K}$)	$40/60\mathrm{t~Xe}$	web	[381]
	PandaX-xT	Jinping, China	202x	scint.+ioniz. ($\sim 170 \mathrm{K}$)	$43 \mathrm{t} \mathrm{Xe}$	web	[382]
	QUEST-DMC			quasipart. (~ $100 \mu \text{K}$)	$1\mathrm{cm^3}$ ³ He	paper	[383]
	DELIGHT	Vue-des-Alpes, Switz.	202x	${ m phon.+roton}~(\sim20{ m mK})$	$101 \ {}^{4}\mathrm{He}$	web	[384]
	HERALD		202x	${ m phon.+roton}~(\sim 50{ m mK})$	$\sim 1{ m kg}~{ m ^4He}$	web	[385]
SUD	EPCDMS SNOLAB	SNOLAB Canada	2022	\int ath. phon.[+ioniz.] (15 mK)	11[+14] kg Ge	web [?	[386]
SUP	ERODING SNOLAD	SNOLAD, Callada	2023	t = 1.5 mK	$2.4[+1.2]\mathrm{kg}\mathrm{Si}$	web	[300]
	DAMIC-M	Modane, France	2025	ioniz. ($\sim 120 \mathrm{K}$)	$0.7\mathrm{kg~Si}$	web	[387]
	OSCURA	SNOLAB, Canada	2029	ioniz. ($\sim 130 \mathrm{K}$)	$10 \mathrm{kg} \mathrm{Si}$	web	[388]
	CDEX-50	Jinping, China	202x	ioniz. ($\sim 90 \mathrm{K}$)	$\sim 300 \mathrm{kg} \mathrm{Ge}$	web	talk
EDE	LWEISS-CRYOSEL	Modane, France	202x	ath. phon. ($\sim 10 \mathrm{mK}$)	$\sim 30{ m g~Ge}$	web	[389]
	CDEX-300	Jinping, China	2027	ioniz. ($\sim 90 \mathrm{K}$)	$\sim 300 \mathrm{kg} \mathrm{Ge}$	web	LOI
	CDEX-1T	Jinping, China	2033	ioniz. ($\sim 90 \mathrm{K}$)	$\sim 1\mathrm{t}~\mathrm{Ge}$	web	LOI
	CDEX-10T	Jinping, China	2040	ioniz. ($\sim 90 \mathrm{K}$)	$\sim 10\mathrm{t~Ge}$	web	LOI
	COSINE-200	Yemilab, South Korea	2024	scint. ($\sim 300 \mathrm{K}$)	$\sim 200 \mathrm{kg} \mathrm{NaI(Tl)}$	web	talk
	COSINUS	Gran Sasso, Italy	2024	scint. (~ $10 \mathrm{mK}$)	$\sim 1 \mathrm{kg} \mathrm{NaI}(\mathrm{Tl})$	web	[390]
	SABRE 5	Gran Sasso, Italy	2024	scint. ($\sim 300 \mathrm{K}$)	$50 \mathrm{kg} \mathrm{NaI}(\mathrm{Tl})$	web	[330]
		SUPL, Australia	2023	scint. ($\sim 300 \mathrm{K}$)	$50 \mathrm{kg} \mathrm{NaI(Tl)}$	web	[000]
	PICOLON	Kamioka, Japan	202x	scint. ($\sim 300 \mathrm{K}$)	$54 \rightarrow 250 \mathrm{kg} \mathrm{NaI(Tl)}$	paper	[391]
k	KAMLAND-PICO	Kamioka, Japan	203x	scint. ($\sim 300 \mathrm{K}$)	$1000 \mathrm{kg} \mathrm{NaI}(\mathrm{Tl})$	paper	[391]
	DMICE-250	South Pole		scint. ($\sim 260 \mathrm{K}$)	$\sim 200 \mathrm{kg} \mathrm{NaI(Tl)}$	talk	talk
	PICO-40L	SNOLAB, Canada	2023	bubble chamber ($\sim 290 \mathrm{K}$)	$\sim 50{ m kg}{ m C}_3{ m F}_8$	web	[392]
	PICO-500	SNOLAB, Canada	202x	bubble chamber ($\sim 290 \mathrm{K}$)	$360\mathrm{kg}~\mathrm{C_3F_8}$	web	[393]
	MOSCAB	Gran Sasso, Italy	202x	bubble chamber ($\sim 290 \mathrm{K}$)	$2 \rightarrow 25 \mathrm{l} \mathrm{C}_3 \mathrm{F}_8$	paper	[348]
	MIMAC	Grenoble, France		ioniz. ($\sim 300 \mathrm{K}$)	${ m CF_4+CHF_3}$	paper	[352]
NI	EWS-G : ECUME	SNOLAB, Canada		ioniz. ($\sim 300 \mathrm{K}$)	$\sim 2 \mathrm{kg} \mathrm{CH}_4$	web	[335]
NEW	S-G : DARKSPHERE	Boulby, UK		ioniz. ($\sim 300 \mathrm{K}$)	$27\mathrm{kg}\mathrm{He+C_4H_{10}}$	web	[335]
	CYGNO	Gran Sasso, Italy	2024	ioniz. ($\sim 300 \mathrm{K}$)	$1\mathrm{m}^3~\mathrm{He+CF_4}$	web	[354]
	CYGNUS	multiple sites		ioniz. ($\sim 300 \mathrm{K}$)	$10^3\mathrm{m}^3~\mathrm{He}\mathrm{+SF}_6/\mathrm{CF}_4$	web	[355]
	SNOWBALL			supercooled liq. ($\sim 250 \mathrm{K}$)	$1{ m kg}{ m H}_2{ m O}$	talk	[394]
	ALETHEA			scint.+ioniz. ($\sim 4 \mathrm{K}$)	$10 \mathrm{kg} \mathrm{He}$	paper	[395]
	TESSERACT			ath. phon.	Al_2O_3 , GaAs, He	web	LOI
	SPLENDOR			ioniz	$Eu_5In_2Sb_6$, $EuZn_2P_2$	poster	LOI
	WINDCHIME			accelerometers		paper	[266]

Planned future, and R&D project for direct detection experiment, few examples

Final test for DAMA results

Next generation of Noble gases TPC to reach the neutrino fog

Directionality to overcome it

Exploring the low-mass DM realm

