Dark Matter Experiments - III Maxime Pierre

BND Graduate School – Blankenberge 2024

Lecture 1 - Dark Matter Direct Detection part 1 **Direct Detection Principle** Low-background Experiments **Experimental Landscape** Lecture 2 - Dark Matter Direct Detection part 2 Case Example: XENONnT **Application to Neutrino Physics**

Lecture 3 - Dark Matter Indirect Detection

Dark Matter Production

Dark Matter - Lecture III

Dark Matter Indirect detection

Dark Matter Production

2

Dark Matter Indirect Detection

(For Dummies)

Concept of Indirect detection

Multiple Astrophysical evidences for the presence of DM

But more can be done: Astrophysics can also be used to constrain DM particle properties!

Concept of Indirect detection

Indirect DM Signature

DM pair annihilation (or decay) resulting in measurable SM particles

Concept of Indirect detection

Initial constrain from WIMP Miracle

- WIMP production | freeze-out
- Observed relic DM density related to the annihilation cross section

$$\Omega_{\chi} \propto \frac{1}{\langle \sigma v \rangle_{\rm ann}} \sim \frac{m_{\chi}^2}{g_{\chi}^4}$$

Energy spectra at production

WIMP mass window

Big Bang Nucleosynthesis

$$m_{\chi} > \mathcal{O}(1) \,\mathrm{MeV}$$

Constrain on WIMP mass from Unitarity limit (s-wave)

$$m_{\chi} < 100 \,\mathrm{TeV}$$

Indirect DM Messenger

Multiples channel (Multi-messenger) to probe indirect evidence of DM (signature)

- Indirect DM with cosmic rays
- Indirect DM with gamma rays
- Indirect DM with neutrinos
- DM in the stars?
- And many more...

My goal here, will be to present only a sub-set of the experiment looking for DM indirect detection via one of this channel. I might miss your favourite experiment in the process, sorry about that.

How to look for DM Ann. signature?

 \blacksquare Estimate the differential flux of DM annihilation product (γ, ν, \ldots) on Earth from a region of interest in the sky. (More detail for \neq product: arxiv.org:2406.01705)

 \blacksquare Measuring lower limit on flux \rightarrow derive lower limit on annihilation cross-section

How to look for DM Ann. signature?

- Different type of signal:
 - Continuum:
 $\chi\chi \to q\bar{q}, Z\bar{Z}, W^+W^-$ Box:

$$\chi\chi \to \phi\phi; \phi \to \gamma\gamma$$

- Virtual internal
 Bremsstrahlung: $\chi\chi \rightarrow \ell^+ \ell^- \gamma$
 - $\chi \chi \rightarrow \iota \quad \iota$ Line:

 $\chi\chi \to \gamma\gamma$

Where to look for DM Ann. signature?

- Regions with large density of DM
- But signal/ratio is also important! (Low astrophysical background)

J. Conrad, O. Reimer, *Nature Phys* **13**, 224–231 (2017)

DM annihilation with gamma rays

Different types of detectors for gamma rays:

- Spatial experiments (like FERMI, AMS-02)
- VERITAS, CTA,...)
- Air Čerenkov telescopes (HAWC, MILAGO,...)

Imaging atmospheric Čerenkov telescopes (H.E.S.S., MAGIC,

High Energy Stereoscopic System (H.E.S.S)

Imaging Atmospheric Čerenkov Telescope

γ-ray enters the atmosphere

Electromagnetic cascade

10 nanosecond snapshot

0.1 km² "light pool", a few photons per m².

- Ground based IACT:
 - Energy range: 30 GeV 100 TeV
 - Location: Namibia
 - Operating since 2003

Čerenkov Telescope Array (CTA)

Ground based IACT:

Energy range*: 50 GeV - 50 TeV Location: Paranal (Chile), La Palma (Spain) Future Telescope - Improved E-resolution

Gabriel Pérez Diaz (IAC)/Marc-André B I (CTAO)/ESO/ N. Risind (skysurvey.org)

DM annihilation with Neutrinos

Types of detectors for neutrinos:

- Detect Shower of secondary particles (e.g. muons)

Large Underground/Under-Ice/Under-Sea Cerenkov detectors (IceCube, BAIKAL, ANTARES, Super Kamiokande, KM3NET*)

arXiv

Under-Ice Large Cerenkov Telescope: Energy range: > 100 GeV Location: South Pole Operating since 2005

Credit: IceCube Collabo

KM3NET

Under-Sea Large Cerenkov Telescope: Energy range: > 1 TeV Location: ORCA (France) ARCA (Italy) Under deployment

DM annihilation with Charged Cosmic Rays 20

Types of detectors for Charged Cosmic Rays:

- distinguish between particles/anti-particles.
- **Constrain from limited size**

Satellite (or spatial station) detectors, use magnetic field to

Multi-layer for Tracking & Calorimeter

Alpha Magnetic Spectrometer:

- Energy range: 50 MeV 2 TeV
- Location: ISS (Space)
- Operating since 2011

arXiv:1009.5349

Fermi - Large Area Telescope (Fermi-LAT)

- Gamma Ray Telescope
 - Energy range: 20 MeV 500 GeV
 - Location: Space Satellite
 - Operating since 2008
 - Can also detect charged cosmic rays using Earth magnetic field

γ incoming gamma ray

electron-positron pair

Indirect DM search status

All Indirect Detection constraints

DM mass in GeV

DM capture in Stars

- Sun | Neutron stars | White Dwarfs
 - DM loses energy by scattering in the star and get gravitationally bound to the star
 - Accumulation of DM \rightarrow Annihilation
 - At equilibrium, relation between annihilation and capture rate
 - Can probe same quantity as DM direct detection experiment

Dark Matter Production

(For Dummies)2

Concept of DM Production

Probing the Dark Sector:

- Accelerators experiments (Energy Frontier)
 - Missing transverse momentum (MET)
 - Signature of Mediator (Resonance)
- Colliders experiments (Intensity Frontier)
 - Missing energy, momentum, or mass
 - Decay of Mediator or unstable DM particles

Collider experiments

ForwArd Search ExpeRiment (FASER):

- Running at LHC, close to ATLAS Interaction point
- Look for light DM, like Axion-Like Particle (ALPs), Dark Photons.
- Neutrino as well

BELLE-2:

- Running at SuperKEKB, Japan
- Focus on flavour physics (B/D mesons, Tau lepton decays)
- Explore light DM (dark sector particles)

Interpretation of results

Credit Slide: Luca Scotto Lavina

Comparison with Direct Detection Results

Based on coupling assumptions:

Credit Slide: Luca Scotto Lavina

Mediator mass

*****Fix couplings

Fix DM mass

*****#% C.L. on production cross section ratio of mediators

DM mass

*****Fix couplings

- \star Limits on spin χ -nucleon cross sections at # % C.L.
- *Allow to compare collider searches with other experiments

